The Bluetooth Low Energy (BLE) controller implementation in Espressif ESP-IDF 4.2 and earlier (for ESP32 devices) does not properly restrict the channel map field of the connection request packet on reception, allowing attackers in radio range to cause a denial of service (crash) via a crafted packet.
The Bluetooth Classic implementation in Espressif ESP-IDF 4.4 and earlier does not properly handle the reception of multiple LMP IO Capability Request packets during the pairing process, allowing attackers in radio range to trigger memory corruption (and consequently a crash) in ESP32 via a replayed (duplicated) LMP packet.
The EAP peer implementation in Espressif ESP-IDF 2.0.0 through 4.0.0 and ESP8266_NONOS_SDK 2.2.0 through 3.1.0 processes EAP Success messages before any EAP method completion or failure, which allows attackers in radio range to cause a denial of service (crash) via a crafted message.
The Bluetooth Low Energy (BLE) controller implementation in Espressif ESP-IDF 4.0 through 4.2 (for ESP32 devices) returns the wrong number of completed BLE packets and triggers a reachable assertion on the host stack when receiving a packet with an MIC failure. An attacker within radio range can silently trigger the assertion (which disables the target's BLE stack) by sending a crafted sequence of BLE packets.
The Bluetooth Classic implementation in Espressif ESP-IDF 4.4 and earlier does not properly handle the reception of continuous unsolicited LMP responses, allowing attackers in radio range to trigger a denial of service (crash) in ESP32 by flooding the target device with LMP Feature Response data.
arduino-esp32 is an Arduino core for the ESP32, ESP32-S2, ESP32-S3, ESP32-C3, ESP32-C6 and ESP32-H2 microcontrollers. The `arduino-esp32` CI is vulnerable to multiple Poisoned Pipeline Execution (PPE) vulnerabilities. Code injection in `tests_results.yml` workflow (`GHSL-2024-169`) and environment Variable injection (`GHSL-2024-170`). These issue have been addressed but users are advised to verify the contents of the downloaded artifacts.
An issue was discovered in Espressif ESP-IDF 2.x and 3.x before 3.0.6 and 3.1.x before 3.1.1. Insufficient validation of input data in the 2nd stage bootloader allows a physically proximate attacker to bypass secure boot checks and execute arbitrary code, by crafting an application binary that overwrites a bootloader code segment in process_segment in components/bootloader_support/src/esp_image_format.c. The attack is effective when the flash encryption feature is not enabled, or if the attacker finds a different vulnerability that allows them to write this binary to flash memory.
Improper input validation in some Intel(R) PROSet/Wireless WiFi and Killer(TM) WiFi software may allow an unauthenticated user to potentially enable denial of service via adjacent access.
A vulnerability in the VLAN Trunking Protocol (VTP) subsystem of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to corrupt the internal VTP database on an affected device and cause a denial of service (DoS) condition. The vulnerability is due to a logic error in how the affected software handles a subset of VTP packets. An attacker could exploit this vulnerability by sending VTP packets in a sequence that triggers a timeout in the VTP message processing code of the affected software. A successful exploit could allow the attacker to impact the ability to create, modify, or delete VLANs and cause a DoS condition. There are workarounds that address this vulnerability. This vulnerability affects Cisco devices that are running a vulnerable release of Cisco IOS Software or Cisco IOS XE Software, are operating in VTP client mode or VTP server mode, and do not have a VTP domain name configured. The default configuration for Cisco devices that are running Cisco IOS Software or Cisco IOS XE Software and support VTP is to operate in VTP server mode with no domain name configured.
A vulnerability in the Cisco Discovery Protocol (formerly known as CDP) subsystem of devices running, or based on, Cisco NX-OS Software contain a vulnerability that could allow an unauthenticated, adjacent attacker to create a denial of service (DoS) condition. The vulnerability is due to a failure to properly validate certain fields within a Cisco Discovery Protocol message prior to processing it. An attacker with the ability to submit a Cisco Discovery Protocol message designed to trigger the issue could cause a DoS condition on an affected device while the device restarts. This vulnerability affects Firepower 4100 Series Next-Generation Firewall, Firepower 9300 Security Appliance, MDS 9000 Series Multilayer Director Switches, Nexus 1000V Series Switches, Nexus 1100 Series Cloud Services Platforms, Nexus 2000 Series Switches, Nexus 3000 Series Switches, Nexus 3500 Platform Switches, Nexus 3600 Platform Switches, Nexus 5500 Platform Switches, Nexus 5600 Platform Switches, Nexus 6000 Series Switches, Nexus 7000 Series Switches, Nexus 7700 Series Switches, Nexus 9000 Series Switches in NX-OS mode, Nexus 9500 R-Series Line Cards and Fabric Modules, UCS 6100 Series Fabric Interconnects, UCS 6200 Series Fabric Interconnects, UCS 6300 Series Fabric Interconnects. Cisco Bug IDs: CSCvc89242, CSCve40943, CSCve40953, CSCve40965, CSCve40970, CSCve40978, CSCve40992, CSCve41000, CSCve41007.
In Open vSwitch (OvS) 2.7.0, while parsing an OpenFlow role status message, there is a call to the abort() function for undefined role status reasons in the function `ofp_print_role_status_message` in `lib/ofp-print.c` that may be leveraged toward a remote DoS attack by a malicious switch.
An issue was discovered on Securifi Almond, Almond+, and Almond 2015 devices with firmware AL-R096. The device provides a UPnP functionality for devices to interface with the router and interact with the device. It seems that the "NewInMessage" SOAP parameter passed with a huge payload results in crashing the process. If the firmware version AL-R096 is dissected using binwalk tool, we obtain a cpio-root archive which contains the filesystem set up on the device that contains all the binaries. The binary "miniupnpd" is the one that has the vulnerable function that receives the values sent by the SOAP request. If we open this binary in IDA-pro we will notice that this follows a MIPS little endian format. The function WscDevPutMessage at address 0x0041DBB8 in IDA pro is identified to be receiving the values sent in the SOAP request. The SOAP parameter "NewInMesage" received at address 0x0041DC30 causes the miniupnpd process to finally crash when a second request is sent to the same process.
In F5 BIG-IP LTM, AAM, AFM, Analytics, APM, ASM, DNS, GTM, Link Controller, PEM and WebSafe software version 13.0.0, 12.1.0 - 12.1.2 and 11.5.1 - 11.6.1, an undisclosed sequence of packets, sourced from an adjacent network may cause TMM to crash.
Drager Infinity Delta, Infinity Delta, all versions, Delta XL, all versions, Kappa, all version, and Infinity Explorer C700, all versions. A malformed network packet may cause the monitor to reboot. By repeatedly sending the malformed network packet, an attacker may be able to disrupt patient monitoring by causing the monitor to repeatedly reboot until it falls back to default configuration and loses network connectivity.
The web interface in TP-Link TL-WRN841N 0.9.1 4.16 v0348.0 is vulnerable to a denial of service when an unauthenticated LAN user sends a crafted HTTP header containing an unexpected Cookie field.
There is an Input verification vulnerability in Huawei Smartphone.Successful exploitation of this vulnerability may cause Bluetooth DoS.
Improper input validation for some Intel(R) Wireless Bluetooth(R) products and Killer(TM) Bluetooth(R) products in Windows 10 and 11 before version 22.80 may allow an unauthenticated user to potentially enable denial of service via adjacent access.
An Improper Input Validation vulnerability in the VxLAN packet forwarding engine (PFE) of Juniper Networks Junos OS on QFX5000 Series, EX4600 Series devices allows an unauthenticated, adjacent attacker, sending two or more genuine packets in the same VxLAN topology to possibly cause a DMA memory leak to occur under various specific operational conditions. The scenario described here is the worst-case scenario. There are other scenarios that require operator action to occur. An indicator of compromise may be seen when multiple devices indicate that FPC0 has gone missing when issuing a show chassis fpc command for about 10 to 20 minutes, and a number of interfaces have also gone missing. Use the following command to determine if FPC0 has gone missing from the device. show chassis fpc detail This issue affects: Juniper Networks Junos OS on QFX5000 Series, EX4600 Series: * 18.4 version 18.4R2 and later versions prior to 20.4R3-S8; * 21.1 version 21.1R1 and later versions prior to 21.2R3-S6; * 21.3 versions prior to 21.3R3-S5; * 21.4 versions prior to 21.4R3-S4; * 22.1 versions prior to 22.1R3-S3; * 22.2 versions prior to 22.2R3-S1; * 22.3 versions prior to 22.3R2-S2, 22.3R3; * 22.4 versions prior to 22.4R2.
Due to a new NDP proxy feature for EVPN leaf nodes introduced in Junos OS 17.4, crafted NDPv6 packets could transit a Junos device configured as a Broadband Network Gateway (BNG) and reach the EVPN leaf node, causing a stale MAC address entry. This could cause legitimate traffic to be discarded, leading to a Denial of Service (DoS) condition. This issue only affects Junos OS 17.4 and later releases. Prior releases do not support this feature and are unaffected by this vulnerability. This issue only affects IPv6. IPv4 ARP proxy is unaffected by this vulnerability. This issue affects Juniper Networks Junos OS: 17.4 versions prior to 17.4R2-S9, 17.4R3 on MX Series; 18.1 versions prior to 18.1R3-S9 on MX Series; 18.2 versions prior to 18.2R2-S7, 18.2R3-S3 on MX Series; 18.2X75 versions prior to 18.2X75-D33, 18.2X75-D411, 18.2X75-D420, 18.2X75-D60 on MX Series; 18.3 versions prior to 18.3R1-S7, 18.3R2-S3, 18.3R3 on MX Series; 18.4 versions prior to 18.4R1-S5, 18.4R2-S2, 18.4R3 on MX Series; 19.1 versions prior to 19.1R1-S4, 19.1R2 on MX Series; 19.2 versions prior to 19.2R1-S3, 19.2R2 on MX Series.
Realtek RTL8762EKF-EVB RTL8762E SDK V1.4.0 was discovered to utilize insufficient permission checks on critical fields within Bluetooth Low Energy (BLE) data packets. This issue allows attackers to cause a Denial of Service (DoS) via a crafted LL_Length_Req packet.
In IntelliVue patient monitors MX100, MX400-550, MX600, MX700, MX750, MX800, MX850, MP2-MP90, and IntelliVue X2 and X3 Versions N and prior, the product receives input or data but does not validate or incorrectly validates that the input has the properties required to process the data safely and correctly, which can induce a denial-of-service condition through a system restart.
Windows Mobile Broadband Driver Denial of Service Vulnerability
Improper handling of ASB-C broadcast packets with crafted opcode in LMP can lead to uncontrolled resource consumption in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wired Infrastructure and Networking
Some Huawei smartphones with software of BGO-L03C158B003CUSTC158D001 and BGO-L03C331B009CUSTC331D001 have a DoS vulnerability due to insufficient input validation. An attacker could exploit this vulnerability by sending specially crafted NFC messages to the target device. Successful exploit could make a service crash.
Harman Becker MGU21 Bluetooth Improper Input Validation Denial-of-Service Vulnerability. This vulnerability allows network-adjacent attackers to create a denial-of-service condition on affected installations of Harman Becker MGU21 devices. Authentication is not required to exploit this vulnerability. The specific flaw exists within the Bluetooth stack of the BCM89359 chipset. The issue results from the lack of proper validation of Bluetooth frames. An attacker can leverage this vulnerability to create a denial-of-service condition on the system. Was ZDI-CAN-23942.
An Improper Input Validation vulnerability in the active-lease query portion in JDHCPD's DHCP Relay Agent of Juniper Networks Junos OS allows an attacker to cause a Denial of Service (DoS) by sending a crafted DHCP packet to the device thereby crashing the jdhcpd DHCP service. This is typically configured for Broadband Subscriber Sessions. Continued receipt and processing of this crafted packet will create a sustained Denial of Service (DoS) condition. This issue affects Juniper Networks Junos OS: 19.4 versions prior to 19.4R3-S1; 20.1 versions prior to 20.1R2-S1, 20.1R3; 20.2 versions prior to 20.2R3; 20.3 versions prior to 20.3R2. This issue does not affect Junos OS Evolved.
A vulnerability has been identified in BACnet ATEC 550-440 (All versions), BACnet ATEC 550-441 (All versions), BACnet ATEC 550-445 (All versions), BACnet ATEC 550-446 (All versions). Affected devices improperly handle specific incoming BACnet MSTP messages. This could allow an attacker residing in the same BACnet network to send a specially crafted MSTP message that results in a denial of service condition of the targeted device. A power cycle is required to restore the device's normal operation.
Improper input validation for some Intel(R) PROSet/Wireless and Intel(R) Killer(TM) Wi-Fi software before version 22.240 may allow an unauthenticated user to potentially enable denial of service via adjacent access.
Hughes high-performance broadband satellite modems, models HN7740S DW7000 HN7000S/SM, are potentially vulnerable to improper input validation. The device's advanced status web page that is linked to from the basic status web page does not appear to properly parse malformed GET requests. This may lead to a denial of service.
Apache HTTP Server mod_cluster before version httpd 2.4.23 is vulnerable to an Improper Input Validation in the protocol parsing logic in the load balancer resulting in a Segmentation Fault in the serving httpd process.
An Improper Validation of Syntactic Correctness of Input vulnerability in the Juniper DHCP daemon (jdhcpd) of Juniper Networks Junos OS allows an adjacent unauthenticated attacker sending a malformed DHCP packet to cause a crash of jdhcpd and thereby a Denial of Service (DoS). If option-82 is configured in a DHCP snooping / -security scenario, jdhcpd crashes if a specific malformed DHCP request packet is received. The DHCP functionality is impacted while jdhcpd restarts, and continued exploitation of the vulnerability will lead to the unavailability of the DHCP service and thereby a sustained DoS. This issue affects Juniper Networks Junos OS 13.2 version 13.2R1 and later versions prior to 15.1R7-S11; 18.3 versions prior to 18.3R3-S6; 18.4 versions prior to 18.4R2-S9, 18.4R3-S10; 19.1 versions prior to 19.1R2-S3, 19.1R3-S7; 19.2 versions prior to 19.2R1-S8, 19.2R3-S4; 19.3 versions prior to 19.3R2-S7, 19.3R3-S4; 19.4 versions prior to 19.4R3-S6; 20.1 versions prior to 20.1R3-S3; 20.2 versions prior to 20.2R3-S3; 20.3 versions prior to 20.3R3-S1; 20.4 versions prior to 20.4R3; 21.1 versions prior to 21.1R2-S1, 21.1R3; 21.2 versions prior to 21.2R1-S1, 21.2R2. This issue does not affect Juniper Networks Junos OS version 12.3R12 and prior versions.
An improper input validation vulnerability in the Routing Protocol Daemon (RPD) service of Juniper Networks Junos OS allows an attacker to send a malformed RSVP packet when bidirectional LSPs are in use, which when received by an egress router crashes the RPD causing a Denial of Service (DoS) condition. Continued receipt of the packet will sustain the Denial of Service. This issue affects: Juniper Networks Junos OS: All versions prior to 17.3R3-S10 except 15.1X49-D240 for SRX series; 17.4 versions prior to 17.4R3-S2; 18.1 versions prior to 18.1R3-S10; 18.2 versions prior to 18.2R2-S7, 18.2R3-S4; 18.3 versions prior to 18.3R3-S2; 18.4 versions prior to 18.4R1-S8, 18.4R2-S6, 18.4R3-S2; 19.1 versions prior to 19.1R1-S5, 19.1R3-S3; 19.2 versions prior to 19.2R3; 19.3 versions prior to 19.3R2-S5, 19.3R3; 19.4 versions prior to 19.4R2-S2, 19.4R3-S1; 20.1 versions prior to 20.1R1-S4, 20.1R2; 15.1X49 versions prior to 15.1X49-D240 on SRX Series. Juniper Networks Junos OS Evolved: 19.3 versions prior to 19.3R2-S5-EVO; 19.4 versions prior to 19.4R2-S2-EVO; 20.1 versions prior to 20.1R1-S4-EVO.
An Improper Input Validation vulnerability in the Juniper DHCP daemon (jdhcpd) of Juniper Networks Junos OS allows an adjacent unauthenticated attacker to cause a crash of jdhcpd and thereby a Denial of Service (DoS). If a device is configured as DHCPv6 local server and persistent storage is enabled, jdhcpd will crash when receiving a specific DHCPv6 message. This issue affects: Juniper Networks Junos OS All versions prior to 15.1R7-S11; 18.4 versions prior to 18.4R3-S9; 19.1 versions prior to 19.1R2-S3, 19.1R3-S7; 19.2 versions prior to 19.2R1-S8, 19.2R3-S3; 19.4 versions prior to 19.4R3-S5; 20.1 versions prior to 20.1R3-S1; 20.2 versions prior to 20.2R3-S2; 20.3 versions prior to 20.3R3-S1; 20.4 versions prior to 20.4R3; 21.1 versions prior to 21.1R2; 21.2 versions prior to 21.2R2.
A specific flaw exists within the Bluetooth stack of the MIB3 infotainment. The issue results from the lack of proper validation of user-supplied data, which can result in an arbitrary channel disconnection. An attacker can leverage this vulnerability to cause a denial-of-service attack for every connected client of the infotainment device. The vulnerability was originally discovered in Skoda Superb III car with MIB3 infotainment unit OEM part number 3V0035820. The list of affected MIB3 OEM part numbers is provided in the referenced resources.
IBM BigFix Platform could allow an attacker on the local network to crash the BES server using a specially crafted XMLSchema request.
Improper input validation for some Intel(R) PROSet/Wireless and Intel(R) Killer(TM) Wi-Fi software before version 22.240 may allow an unauthenticated user to potentially enable denial of service via adjacent access.
An Improper Input Validation vulnerability in the Routing Protocol Daemon (rpd) of Juniper Networks Junos OS and Junos OS Evolved allows an adjacent unauthenticated attacker to cause DoS (Denial of Service). If another router generates more than one specific valid OSPFv3 LSA then rpd will crash while processing these LSAs. This issue only affects systems configured with OSPFv3, while OSPFv2 is not affected. This issue affects: Juniper Networks Junos OS 19.2 versions prior to 19.2R3-S6; 19.3 version 19.3R2 and later versions; 19.4 versions prior to 19.4R2-S8, 19.4R3-S9; 20.1 version 20.1R1 and later versions; 20.2 versions prior to 20.2R3-S5; 20.3 versions prior to 20.3R3-S5; 20.4 versions prior to 20.4R3-S4; 21.1 versions prior to 21.1R3-S2; 21.2 versions prior to 21.2R3-S1; 21.3 versions prior to 21.3R3-S2; 21.4 versions prior to 21.4R2. Juniper Networks Junos OS Evolved All versions prior to 20.4R3-S5-EVO; 21.1-EVO versions prior to 21.1R3-S2-EVO; 21.2-EVO versions prior to 21.2R3-S1-EVO; 21.3-EVO versions prior to 21.3R3-S2-EVO; 21.4-EVO versions prior to 21.4R2-EVO; 22.1-EVO versions prior to 22.1R2-EVO; 22.2-EVO versions prior to 22.2R2-EVO. This issue does not affect Juniper Networks Junos OS 19.2 versions prior to 19.2R2.
The sys_recvfrom function in nmbd in Samba 3.6.x before 3.6.24, 4.0.x before 4.0.19, and 4.1.x before 4.1.9 allows remote attackers to cause a denial of service (infinite loop and CPU consumption) via a malformed UDP packet.
Improper input validation for some Intel(R) PROSet/Wireless WiFi products may allow an unauthenticated user to potentially enable denial of service via adjacent access.
A vulnerability in the handling of Inter-Access Point Protocol (IAPP) messages by Cisco Wireless LAN Controller (WLC) Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition. The vulnerability exist because the software improperly validates input on fields within IAPP messages. An attacker could exploit the vulnerability by sending malicious IAPP messages to an affected device. A successful exploit could allow the attacker to cause the Cisco WLC Software to reload, resulting in a DoS condition. Software versions prior to 8.2.170.0, 8.5.150.0, and 8.8.100.0 are affected.
A vulnerability in the integrated wireless access point (AP) packet processing of the Cisco 1000 Series Connected Grid Router (CGR1K) could allow an unauthenticated, adjacent attacker to cause a denial of service condition on an affected device. This vulnerability is due to insufficient input validation of received traffic. An attacker could exploit this vulnerability by sending crafted traffic to an affected device. A successful exploit could allow the attacker to cause the integrated AP to stop processing traffic, resulting in a DoS condition. It may be necessary to manually reload the CGR1K to restore AP operation.
A vulnerability in Simple Network Management Protocol (SNMP) trap generation for wireless clients of Cisco IOS XE Wireless Controller Software for the Catalyst 9000 Family could allow an unauthenticated, adjacent attacker to cause an affected device to unexpectedly reload, resulting in a denial of service (DoS) condition on the device. This vulnerability is due to a lack of input validation of the information used to generate an SNMP trap related to a wireless client connection event. An attacker could exploit this vulnerability by sending an 802.1x packet with crafted parameters during the wireless authentication setup phase of a connection. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition.
Wireshark (formerly Ethereal) 0.10.14 through 1.0.2 allows attackers to cause a denial of service (crash) via a packet with crafted zlib-compressed data that triggers an invalid read in the tvb_uncompress function.
On Phoenix Contact PLCnext Control Devices versions before 2021.0 LTS a specially crafted LLDP packet may lead to a high system load in the PROFINET stack. An attacker can cause failure of system services or a complete reboot.
A vulnerability in the 802.11 association frame validation of Cisco Catalyst 9100 Series Access Points (APs) could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient input validation of certain parameters within association request frames received by the AP. An attacker could exploit this vulnerability by sending a crafted 802.11 association request to a nearby device. An exploit could allow the attacker to unexpectedly reload the device, resulting in a DoS condition.
Unspecified vulnerability in Wireshark (formerly Ethereal) 0.99.6 through 1.0.2 allows attackers to cause a denial of service (crash) via a crafted Tektronix .rf5 file.
Improper input validation in some Intel(R) Wireless Bluetooth(R) products before version 21.110 may allow an unauthenticated user to potentially enable denial of service via adjacent access.
ASUS Japan WL-330NUL devices with firmware before 3.0.0.42 allow remote attackers to cause a denial of service via unspecified vectors.
Improper input validation in some Intel(R) PROSet/Wireless WiFi products before version 21.110 may allow an unauthenticated user to potentially enable denial of service via adjacent access.
The Bluetooth subsystem in Apple OS X before 10.10.5 allows remote attackers to cause a denial of service via malformed Bluetooth ACL packets.