In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix memory leak in __qlt_24xx_handle_abts() Commit 8f394da36a36 ("scsi: qla2xxx: Drop TARGET_SCF_LOOKUP_LUN_FROM_TAG") made the __qlt_24xx_handle_abts() function return early if tcm_qla2xxx_find_cmd_by_tag() didn't find a command, but it missed to clean up the allocated memory for the management command.
In the Linux kernel, the following vulnerability has been resolved: nvmet: fix a possible leak when destroy a ctrl during qp establishment In nvmet_sq_destroy we capture sq->ctrl early and if it is non-NULL we know that a ctrl was allocated (in the admin connect request handler) and we need to release pending AERs, clear ctrl->sqs and sq->ctrl (for nvme-loop primarily), and drop the final reference on the ctrl. However, a small window is possible where nvmet_sq_destroy starts (as a result of the client giving up and disconnecting) concurrently with the nvme admin connect cmd (which may be in an early stage). But *before* kill_and_confirm of sq->ref (i.e. the admin connect managed to get an sq live reference). In this case, sq->ctrl was allocated however after it was captured in a local variable in nvmet_sq_destroy. This prevented the final reference drop on the ctrl. Solve this by re-capturing the sq->ctrl after all inflight request has completed, where for sure sq->ctrl reference is final, and move forward based on that. This issue was observed in an environment with many hosts connecting multiple ctrls simoutanuosly, creating a delay in allocating a ctrl leading up to this race window.
A memory leak in the sdma_init() function in drivers/infiniband/hw/hfi1/sdma.c in the Linux kernel before 5.3.9 allows attackers to cause a denial of service (memory consumption) by triggering rhashtable_init() failures, aka CID-34b3be18a04e. NOTE: This has been disputed as not a vulnerability because "rhashtable_init() can only fail if it is passed invalid values in the second parameter's struct, but when invoked from sdma_init() that is a pointer to a static const struct, so an attacker could only trigger failure if they could corrupt kernel memory (in which case a small memory leak is not a significant problem).
Memory leaks in *clock_source_create() functions under drivers/gpu/drm/amd/display/dc in the Linux kernel before 5.3.8 allow attackers to cause a denial of service (memory consumption). This affects the dce112_clock_source_create() function in drivers/gpu/drm/amd/display/dc/dce112/dce112_resource.c, the dce100_clock_source_create() function in drivers/gpu/drm/amd/display/dc/dce100/dce100_resource.c, the dcn10_clock_source_create() function in drivers/gpu/drm/amd/display/dc/dcn10/dcn10_resource.c, the dcn20_clock_source_create() function in drivers/gpu/drm/amd/display/dc/dcn20/dcn20_resource.c, the dce120_clock_source_create() function in drivers/gpu/drm/amd/display/dc/dce120/dce120_resource.c, the dce110_clock_source_create() function in drivers/gpu/drm/amd/display/dc/dce110/dce110_resource.c, and the dce80_clock_source_create() function in drivers/gpu/drm/amd/display/dc/dce80/dce80_resource.c, aka CID-055e547478a1.
A memory leak in the mwifiex_pcie_alloc_cmdrsp_buf() function in drivers/net/wireless/marvell/mwifiex/pcie.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering mwifiex_map_pci_memory() failures, aka CID-db8fd2cde932.
A memory leak in the alloc_sgtable() function in drivers/net/wireless/intel/iwlwifi/fw/dbg.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering alloc_page() failures, aka CID-b4b814fec1a5.
Multiple memory leaks in the iwl_pcie_ctxt_info_gen3_init() function in drivers/net/wireless/intel/iwlwifi/pcie/ctxt-info-gen3.c in the Linux kernel through 5.3.11 allow attackers to cause a denial of service (memory consumption) by triggering iwl_pcie_init_fw_sec() or dma_alloc_coherent() failures, aka CID-0f4f199443fa.
A memory leak in the crypto_report() function in crypto/crypto_user_base.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering crypto_report_alg() failures, aka CID-ffdde5932042.
A memory leak in the bfad_im_get_stats() function in drivers/scsi/bfa/bfad_attr.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering bfa_port_get_stats() failures, aka CID-0e62395da2bd.
A memory leak in the cx23888_ir_probe() function in drivers/media/pci/cx23885/cx23888-ir.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering kfifo_alloc() failures, aka CID-a7b2df76b42b.
In the Linux kernel before 5.0, a memory leak exists in sit_init_net() in net/ipv6/sit.c when register_netdev() fails to register sitn->fb_tunnel_dev, which may cause denial of service, aka CID-07f12b26e21a.
In the Linux kernel before 5.1.13, there is a memory leak in drivers/scsi/libsas/sas_expander.c when SAS expander discovery fails. This will cause a BUG and denial of service.
An issue was discovered in the Linux kernel before 5.0.6. There is a memory leak issue when idr_alloc() fails in genl_register_family() in net/netlink/genetlink.c.
In the Linux kernel, the following vulnerability has been resolved: smb: Initialize cfid->tcon before performing network ops Avoid leaking a tcon ref when a lease break races with opening the cached directory. Processing the leak break might take a reference to the tcon in cached_dir_lease_break() and then fail to release the ref in cached_dir_offload_close, since cfid->tcon is still NULL.
An issue was discovered in the Linux kernel before 5.15.11. There is a memory leak in the __rds_conn_create() function in net/rds/connection.c in a certain combination of circumstances.
Jean-Baptiste Cayrou discovered that the shiftfs file system in the Ubuntu Linux kernel contained a race condition when handling inode locking in some situations. A local attacker could use this to cause a denial of service (kernel deadlock).
Integer overflow in the ext4_ext_get_blocks function in fs/ext4/extents.c in the Linux kernel before 2.6.34 allows local users to cause a denial of service (BUG and system crash) via a write operation on the last block of a large file, followed by a sync operation.
In the Linux kernel, the following vulnerability has been resolved: net: dsa: improve shutdown sequence Alexander Sverdlin presents 2 problems during shutdown with the lan9303 driver. One is specific to lan9303 and the other just happens to reproduce there. The first problem is that lan9303 is unique among DSA drivers in that it calls dev_get_drvdata() at "arbitrary runtime" (not probe, not shutdown, not remove): phy_state_machine() -> ... -> dsa_user_phy_read() -> ds->ops->phy_read() -> lan9303_phy_read() -> chip->ops->phy_read() -> lan9303_mdio_phy_read() -> dev_get_drvdata() But we never stop the phy_state_machine(), so it may continue to run after dsa_switch_shutdown(). Our common pattern in all DSA drivers is to set drvdata to NULL to suppress the remove() method that may come afterwards. But in this case it will result in an NPD. The second problem is that the way in which we set dp->conduit->dsa_ptr = NULL; is concurrent with receive packet processing. dsa_switch_rcv() checks once whether dev->dsa_ptr is NULL, but afterwards, rather than continuing to use that non-NULL value, dev->dsa_ptr is dereferenced again and again without NULL checks: dsa_conduit_find_user() and many other places. In between dereferences, there is no locking to ensure that what was valid once continues to be valid. Both problems have the common aspect that closing the conduit interface solves them. In the first case, dev_close(conduit) triggers the NETDEV_GOING_DOWN event in dsa_user_netdevice_event() which closes user ports as well. dsa_port_disable_rt() calls phylink_stop(), which synchronously stops the phylink state machine, and ds->ops->phy_read() will thus no longer call into the driver after this point. In the second case, dev_close(conduit) should do this, as per Documentation/networking/driver.rst: | Quiescence | ---------- | | After the ndo_stop routine has been called, the hardware must | not receive or transmit any data. All in flight packets must | be aborted. If necessary, poll or wait for completion of | any reset commands. So it should be sufficient to ensure that later, when we zeroize conduit->dsa_ptr, there will be no concurrent dsa_switch_rcv() call on this conduit. The addition of the netif_device_detach() function is to ensure that ioctls, rtnetlinks and ethtool requests on the user ports no longer propagate down to the driver - we're no longer prepared to handle them. The race condition actually did not exist when commit 0650bf52b31f ("net: dsa: be compatible with masters which unregister on shutdown") first introduced dsa_switch_shutdown(). It was created later, when we stopped unregistering the user interfaces from a bad spot, and we just replaced that sequence with a racy zeroization of conduit->dsa_ptr (one which doesn't ensure that the interfaces aren't up).
Race condition in the store_int_with_restart() function in arch/x86/kernel/cpu/mcheck/mce.c in the Linux kernel through 4.15.7 allows local users to cause a denial of service (panic) by leveraging root access to write to the check_interval file in a /sys/devices/system/machinecheck/machinecheck<cpu number> directory. NOTE: a third party has indicated that this report is not security relevant
Race condition in the tty_fasync function in drivers/char/tty_io.c in the Linux kernel before 2.6.32.6 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via unknown vectors, related to the put_tty_queue and __f_setown functions. NOTE: the vulnerability was addressed in a different way in 2.6.32.9.
A vulnerability was found in Linux kernel, where a use-after-frees in nouveau's postclose() handler could happen if removing device (that is not common to remove video card physically without power-off, but same happens if "unbind" the driver).
The blk_rq_map_user_iov function in block/blk-map.c in the Linux kernel before 2.6.37-rc7 allows local users to cause a denial of service (panic) via a zero-length I/O request in a device ioctl to a SCSI device, related to an unaligned map. NOTE: this vulnerability exists because of an incomplete fix for CVE-2010-4163.
The br_multicast_add_group function in net/bridge/br_multicast.c in the Linux kernel before 2.6.38, when a certain Ethernet bridge configuration is used, allows local users to cause a denial of service (memory corruption and system crash) by sending IGMP packets to a local interface.
The blk_rq_map_user_iov function in block/blk-map.c in the Linux kernel before 2.6.36.2 allows local users to cause a denial of service (panic) via a zero-length I/O request in a device ioctl to a SCSI device.
drivers/firewire/ohci.c in the Linux kernel before 2.6.32-git9, when packet-per-buffer mode is used, allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unknown other impact via an unspecified ioctl associated with receiving an ISO packet that contains zero in the payload-length field.
drivers/scsi/bfa/bfa_core.c in the Linux kernel before 2.6.35 does not initialize a certain port data structure, which allows local users to cause a denial of service (system crash) via read operations on an fc_host statistics file.
GNU Tar through 1.30, when --sparse is used, mishandles file shrinkage during read access, which allows local users to cause a denial of service (infinite read loop in sparse_dump_region in sparse.c) by modifying a file that is supposed to be archived by a different user's process (e.g., a system backup running as root).
An issue was discovered in the Linux kernel through 5.2.13. nbd_genl_status in drivers/block/nbd.c does not check the nla_nest_start_noflag return value.
Race condition in some Intel(R) Aptio* V UEFI Firmware Integrator Tools may allow an authenticated user to potentially enable denial of service via local access.
v9fs_wstat in hw/9pfs/9p.c in QEMU allows guest OS users to cause a denial of service (crash) because of a race condition during file renaming.
In the Linux kernel, the following vulnerability has been resolved: memcg: protect concurrent access to mem_cgroup_idr Commit 73f576c04b94 ("mm: memcontrol: fix cgroup creation failure after many small jobs") decoupled the memcg IDs from the CSS ID space to fix the cgroup creation failures. It introduced IDR to maintain the memcg ID space. The IDR depends on external synchronization mechanisms for modifications. For the mem_cgroup_idr, the idr_alloc() and idr_replace() happen within css callback and thus are protected through cgroup_mutex from concurrent modifications. However idr_remove() for mem_cgroup_idr was not protected against concurrency and can be run concurrently for different memcgs when they hit their refcnt to zero. Fix that. We have been seeing list_lru based kernel crashes at a low frequency in our fleet for a long time. These crashes were in different part of list_lru code including list_lru_add(), list_lru_del() and reparenting code. Upon further inspection, it looked like for a given object (dentry and inode), the super_block's list_lru didn't have list_lru_one for the memcg of that object. The initial suspicions were either the object is not allocated through kmem_cache_alloc_lru() or somehow memcg_list_lru_alloc() failed to allocate list_lru_one() for a memcg but returned success. No evidence were found for these cases. Looking more deeply, we started seeing situations where valid memcg's id is not present in mem_cgroup_idr and in some cases multiple valid memcgs have same id and mem_cgroup_idr is pointing to one of them. So, the most reasonable explanation is that these situations can happen due to race between multiple idr_remove() calls or race between idr_alloc()/idr_replace() and idr_remove(). These races are causing multiple memcgs to acquire the same ID and then offlining of one of them would cleanup list_lrus on the system for all of them. Later access from other memcgs to the list_lru cause crashes due to missing list_lru_one.
In the Linux kernel, the following vulnerability has been resolved: tracing: Have format file honor EVENT_FILE_FL_FREED When eventfs was introduced, special care had to be done to coordinate the freeing of the file meta data with the files that are exposed to user space. The file meta data would have a ref count that is set when the file is created and would be decremented and freed after the last user that opened the file closed it. When the file meta data was to be freed, it would set a flag (EVENT_FILE_FL_FREED) to denote that the file is freed, and any new references made (like new opens or reads) would fail as it is marked freed. This allowed other meta data to be freed after this flag was set (under the event_mutex). All the files that were dynamically created in the events directory had a pointer to the file meta data and would call event_release() when the last reference to the user space file was closed. This would be the time that it is safe to free the file meta data. A shortcut was made for the "format" file. It's i_private would point to the "call" entry directly and not point to the file's meta data. This is because all format files are the same for the same "call", so it was thought there was no reason to differentiate them. The other files maintain state (like the "enable", "trigger", etc). But this meant if the file were to disappear, the "format" file would be unaware of it. This caused a race that could be trigger via the user_events test (that would create dynamic events and free them), and running a loop that would read the user_events format files: In one console run: # cd tools/testing/selftests/user_events # while true; do ./ftrace_test; done And in another console run: # cd /sys/kernel/tracing/ # while true; do cat events/user_events/__test_event/format; done 2>/dev/null With KASAN memory checking, it would trigger a use-after-free bug report (which was a real bug). This was because the format file was not checking the file's meta data flag "EVENT_FILE_FL_FREED", so it would access the event that the file meta data pointed to after the event was freed. After inspection, there are other locations that were found to not check the EVENT_FILE_FL_FREED flag when accessing the trace_event_file. Add a new helper function: event_file_file() that will make sure that the event_mutex is held, and will return NULL if the trace_event_file has the EVENT_FILE_FL_FREED flag set. Have the first reference of the struct file pointer use event_file_file() and check for NULL. Later uses can still use the event_file_data() helper function if the event_mutex is still held and was not released since the event_file_file() call.
The md driver (drivers/md/md.c) in the Linux kernel before 2.6.30.2 might allow local users to cause a denial of service (NULL pointer dereference) via vectors related to "suspend_* sysfs attributes" and the (1) suspend_lo_store or (2) suspend_hi_store functions. NOTE: this is only a vulnerability when sysfs is writable by an attacker.
The cifs_create function in fs/cifs/dir.c in the Linux kernel 2.6.33.2 and earlier allows local users to cause a denial of service (NULL pointer dereference and OOPS) or possibly have unspecified other impact via a NULL nameidata (aka nd) field in a POSIX file-creation request to a server that supports UNIX extensions.
It was discovered systemd does not correctly check the content of PIDFile files before using it to kill processes. When a service is run from an unprivileged user (e.g. User field set in the service file), a local attacker who is able to write to the PIDFile of the mentioned service may use this flaw to trick systemd into killing other services and/or privileged processes. Versions before v237 are vulnerable.
A data race flaw was found in the Linux kernel, between where con is allocated and con->sock is set. This issue leads to a NULL pointer dereference when accessing con->sock->sk in net/tipc/topsrv.c in the tipc protocol in the Linux kernel.
The inode double locking code in fs/ocfs2/file.c in the Linux kernel 2.6.30 before 2.6.30-rc3, 2.6.27 before 2.6.27.24, 2.6.29 before 2.6.29.4, and possibly other versions down to 2.6.19 allows local users to cause a denial of service (prevention of file creation and removal) via a series of splice system calls that trigger a deadlock between the generic_file_splice_write, splice_from_pipe, and ocfs2_file_splice_write functions.
The load_elf_binary function in fs/binfmt_elf.c in the Linux kernel before 2.6.32.8 on the x86_64 platform does not ensure that the ELF interpreter is available before a call to the SET_PERSONALITY macro, which allows local users to cause a denial of service (system crash) via a 32-bit application that attempts to execute a 64-bit application and then triggers a segmentation fault, as demonstrated by amd64_killer, related to the flush_old_exec function.
A use-after-free flaw was found in xen_9pfs_front_removet in net/9p/trans_xen.c in Xen transport for 9pfs in the Linux Kernel. This flaw could allow a local attacker to crash the system due to a race problem, possibly leading to a kernel information leak.
A use-after-free flaw was found in ndlc_remove in drivers/nfc/st-nci/ndlc.c in the Linux Kernel. This flaw could allow an attacker to crash the system due to a race problem.
In the Linux kernel, the following vulnerability has been resolved: mptcp: pm: fix ID 0 endp usage after multiple re-creations 'local_addr_used' and 'add_addr_accepted' are decremented for addresses not related to the initial subflow (ID0), because the source and destination addresses of the initial subflows are known from the beginning: they don't count as "additional local address being used" or "ADD_ADDR being accepted". It is then required not to increment them when the entrypoint used by the initial subflow is removed and re-added during a connection. Without this modification, this entrypoint cannot be removed and re-added more than once.
A use-after-free flaw was found in io_uring/poll.c in io_poll_check_events in the io_uring subcomponent in the Linux Kernel due to a race condition of poll_refs. This flaw may cause a NULL pointer dereference.
Multiple integer overflows in the snd_ctl_new function in sound/core/control.c in the Linux kernel before 2.6.36-rc5-next-20100929 allow local users to cause a denial of service (heap memory corruption) or possibly have unspecified other impact via a crafted (1) SNDRV_CTL_IOCTL_ELEM_ADD or (2) SNDRV_CTL_IOCTL_ELEM_REPLACE ioctl call.
The console selection feature in the Linux kernel 2.6.28 before 2.6.28.4, 2.6.25, and possibly earlier versions, when the UTF-8 console is used, allows physically proximate attackers to cause a denial of service (memory corruption) by selecting a small number of 3-byte UTF-8 characters, which triggers an "off-by-two memory error." NOTE: it is not clear whether this issue crosses privilege boundaries.
In the Linux kernel, the following vulnerability has been resolved: ip: Fix a data-race around sysctl_ip_autobind_reuse. While reading sysctl_ip_autobind_reuse, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_probe_interval. While reading sysctl_tcp_probe_interval, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: ip: Fix data-races around sysctl_ip_prot_sock. sysctl_ip_prot_sock is accessed concurrently, and there is always a chance of data-race. So, all readers and writers need some basic protection to avoid load/store-tearing.
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix a data-race around sysctl_fib_multipath_use_neigh. While reading sysctl_fib_multipath_use_neigh, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_fastopen_blackhole_timeout. While reading sysctl_tcp_fastopen_blackhole_timeout, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_max_reordering. While reading sysctl_tcp_max_reordering, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.