The integrated web server in Siemens RUGGEDCOM ROX I (all versions) at port 10000/TCP could allow remote attackers to perform actions with the privileges of an authenticated user, provided the targeted user has an active session and is induced into clicking on a malicious link or into visiting a malicious website, aka CSRF.
A vulnerability has been identified in JT2Go (All versions < V13.1.0.2), Teamcenter Visualization (All versions < V13.1.0.2). Affected applications lack proper validation of user-supplied data when parsing ASM files. This could lead to pointer dereferences of a value obtained from untrusted source. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-11899)
A vulnerability has been identified in Opcenter Execution Foundation (All versions < V2407), Opcenter Quality (All versions < V2312), SIMATIC PCS neo (All versions < V4.1), SINEC NMS (All versions < V2.0 SP1), Totally Integrated Automation Portal (TIA Portal) V14 (All versions), Totally Integrated Automation Portal (TIA Portal) V15.1 (All versions), Totally Integrated Automation Portal (TIA Portal) V16 (All versions), Totally Integrated Automation Portal (TIA Portal) V17 (All versions < V17 Update 8), Totally Integrated Automation Portal (TIA Portal) V18 (All versions < V18 Update 3). When accessing the UMC Web-UI from affected products, UMC uses an overly permissive CORS policy. This could allow an attacker to trick a legitimate user to trigger unwanted behavior.
The Siemens web application RUGGEDCOM NMS < V1.2 on port 8080/TCP and 8081/TCP could allow a remote attacker to perform a Cross-Site Request Forgery (CSRF) attack, potentially allowing an attacker to execute administrative operations, provided the targeted user has an active session and is induced to trigger a malicious request.
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). Affected applications lack proper validation of user-supplied data when parsing of CG4 files. This could result in a memory access past the end of an allocated buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12027)
nextScaffoldPart in xmlparse.c in Expat (aka libexpat) before 2.4.3 has an integer overflow.
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products is vulnerable to an out of bounds read past the end of an allocated buffer when parsing specially crafted JT files. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-14908)
storeAtts in xmlparse.c in Expat (aka libexpat) before 2.4.3 has an integer overflow.
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). Affected applications lack proper validation of user-supplied data when parsing JT files. A crafted JT file could trigger a type confusion condition. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-11881)
A vulnerability has been identified in SIMATIC PCS neo (All versions < V4.1). When accessing the Information Server from affected products, the products use an overly permissive CORS policy. This could allow an attacker to trick a legitimate user to trigger unwanted behavior.
A vulnerability has been identified in NX 1953 Series (All versions < V1973.3700), NX 1980 Series (All versions < V1988), Solid Edge SE2021 (All versions < SE2021MP8). The affected application contains a use-after-free vulnerability while parsing OBJ files. An attacker could leverage this vulnerability to execute code in the context of the current process (ZDI-CAN-13771).
A vulnerability has been identified in Solid Edge SE2021 (All versions < SE2021MP8). The affected application contains a use-after-free vulnerability while parsing OBJ files. An attacker could leverage this vulnerability to execute code in the context of the current process (ZDI-CAN-13773).
A vulnerability has been identified in Solid Edge SE2021 (All versions < SE2021MP8). The affected application contains a use-after-free vulnerability while parsing OBJ files. An attacker could leverage this vulnerability to execute code in the context of the current process (ZDI-CAN-13776).
A vulnerability has been identified in JT Open (All versions < V11.1.1.0), JT Utilities (All versions < V13.1.1.0), Solid Edge (All versions < V2023). The Jt1001.dll contains a use-after-free vulnerability that could be triggered while parsing specially crafted JT files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-15057, ZDI-CAN-19081)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products contains a use after free vulnerability that could be triggered while parsing specially crafted JT files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-14900)
A vulnerability has been identified in JT Utilities (All versions < V12.8.1.1), JTTK (All versions < V10.8.1.1). JTTK library in affected products is vulnerable to an out of bounds read past the end of an allocated buffer when parsing JT files. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-15055, ZDI-CAN-14915, ZDI-CAN-14865)
A vulnerability has been identified in Solid Edge SE2021 (All versions < SE2021MP8). The affected application contains a use-after-free vulnerability while parsing OBJ files. An attacker could leverage this vulnerability to execute code in the context of the current process (ZDI-CAN-13778).
A vulnerability has been identified in Solid Edge SE2021 (All versions < SE2021MP8). The affected application contains a use-after-free vulnerability while parsing OBJ files. An attacker could leverage this vulnerability to execute code in the context of the current process (ZDI-CAN-13789).
Buffer overflow in a third-party ActiveX component in Siemens SIMATIC RF-MANAGER 2008, and RF-MANAGER Basic 3.0 and earlier, allows remote attackers to execute arbitrary code via a crafted web site.
Buffer overflow in the RegReader ActiveX control in Siemens WinCC before 7.2, as used in SIMATIC PCS7 before 8.0 SP1 and other products, allows remote attackers to execute arbitrary code via a long parameter.
A crafted request uri-path can cause mod_proxy to forward the request to an origin server choosen by the remote user. This issue affects Apache HTTP Server 2.4.48 and earlier.
A vulnerability has been identified in SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIPLUS NET SCALANCE X308-2. The integrated web server of the affected device could allow remote attackers to perform actions with the permissions of a victim user, provided the victim user has an active session and is induced to trigger the malicious request.
Cross-site request forgery (CSRF) vulnerability in WebNavigator in Siemens WinCC 7.0 SP3 and earlier, as used in SIMATIC PCS7 and other products, allows remote attackers to hijack the authentication of arbitrary users for requests that modify data or cause a denial of service.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). A reflected cross-site scripting (XSS) vulnerability exists in the web interface of the affected application that could allow an attacker to execute malicious javascript code by tricking users into accessing a malicious link. The value is reflected in the response without sanitization while throwing an “invalid params element name” error on the get_elements parameters.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). A reflected cross-site scripting (XSS) vulnerability exists in the web interface of the affected application that could allow an attacker to execute malicious javascript code by tricking users into accessing a malicious link. The value is reflected in the response without sanitization while throwing an “invalid params element name” error on the action parameters.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). A reflected cross-site scripting (XSS) vulnerability exists in the web interface of the affected application that could allow an attacker to execute malicious javascript code by tricking users into accessing a malicious link. The malformed value is reflected directly in the response without sanitization while throwing an “invalid path” error.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP1). The web interface of affected devices is vulnerable to a Cross-Site Request Forgery (CSRF) attack. This could allow an attacker to manipulate the SINEC NMS configuration by tricking an unsuspecting user with administrative privileges to click on a malicious link.
A vulnerability has been identified in Solid Edge SE2021 (All Versions < SE2021MP7). The PSKERNEL.dll library in affected application lacks proper validation while parsing user-supplied OBJ files that could lead to a use-after-free condition. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13777)
A vulnerability has been identified in Solid Edge SE2021 (All Versions < SE2021MP7). The PSKERNEL.dll library lacks proper validation while parsing user-supplied OBJ files that could cause an out of bounds access to an uninitialized pointer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13775)
A vulnerability has been identified in Industrial Edge Management (All versions < V1.3). An unauthenticated attacker could change the the password of any user in the system under certain circumstances. With this an attacker could impersonate any valid user on an affected system.
A vulnerability has been identified in COMOS V10.2 (All versions only if web components are used), COMOS V10.3 (All versions < V10.3.3.3 only if web components are used), COMOS V10.4 (All versions < V10.4.1 only if web components are used). The COMOS Web component of COMOS uses a flawed implementation of CSRF prevention. An attacker could exploit this vulnerability to perform cross-site request forgery attacks.
A vulnerability has been identified in POWER METER SICAM Q100 (All versions < V2.60), POWER METER SICAM Q100 (All versions < V2.60), POWER METER SICAM Q100 (All versions < V2.60), POWER METER SICAM Q100 (All versions < V2.60). The web interface of the affected devices are vulnerable to Cross-Site Request Forgery attacks. By tricking an authenticated victim user to click a malicious link, an attacker could perform arbitrary actions on the device on behalf of the victim user.
A flaw was found in c-ares library, where a missing input validation check of host names returned by DNS (Domain Name Servers) can lead to output of wrong hostnames which might potentially lead to Domain Hijacking. The highest threat from this vulnerability is to confidentiality and integrity as well as system availability.
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V16.0.5). The PlantSimCore.dll library lacks proper validation of user-supplied data when parsing SPP files. This could result in a stack based buffer overflow, a different vulnerability than CVE-2021-27396. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13290)
A vulnerability has been identified in SICAM WEB firmware for SICAM A8000 RTUs (All versions < V05.30). The login screen does not sufficiently sanitize input, which enables an attacker to generate specially crafted log messages. If an unsuspecting victim views the log messages via the web browser, these log messages might be interpreted and executed as code by the web application. This Cross-Site-Scripting (XSS) vulnerability might compromize the confidentiality, integrity and availability of the web application.
A vulnerability has been identified in SIMATIC PCS neo V4.1 (All versions < V4.1 Update 3), SIMATIC PCS neo V5.0 (All versions < V5.0 Update 1). Affected products do not correctly invalidate user sessions upon user logout. This could allow a remote unauthenticated attacker, who has obtained the session token by other means, to re-use a legitimate user's session even after logout.
A vulnerability has been identified in SICAM MMU (All versions < V2.05), SICAM SGU (All versions), SICAM T (All versions < V2.18). An attacker in a privileged network position between a legitimate user and the web server might be able to conduct a Man-in-the-middle attack and gain read and write access to the transmitted data.
A vulnerability has been identified in SICAM MMU (All versions < V2.05), SICAM SGU (All versions), SICAM T (All versions < V2.18). An error in the challenge-response procedure could allow an attacker to replay authentication traffic and gain access to protected areas of the web application.
A vulnerability has been identified in JT Utilities (All versions < V13.0.3.0), JTTK (All versions < V11.0.3.0). JTTK library in affected products contains a use-after-free vulnerability that could be triggered while parsing specially crafted JT files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-14911)
A vulnerability has been identified in NX 1980 Series (All versions < V1984), Solid Edge SE2021 (All versions < SE2021MP8). The IFC adapter in affected application contains a use-after-free vulnerability that could be triggered while parsing user-supplied IFC files. An attacker could leverage this vulnerability to execute code in the context of the current process.
Cross-site request forgery (CSRF) vulnerability in Siemens WinCC (TIA Portal) 11 and 12 before 12 SP1 allows remote attackers to hijack the authentication of unspecified victims by leveraging improper configuration of SIMATIC HMI panels by the WinCC product.
A vulnerability has been identified in XHQ (All Versions < 6.1). The web interface could allow a Cross-Site Request Forgery (CSRF) attack if an unsuspecting user is tricked into accessing a malicious link.
A vulnerability has been identified in SIEMENS LOGO!8 (6ED1052-xyyxx-0BA8 FS:01 to FS:06 / Firmware version V1.80.xx and V1.81.xx), SIEMENS LOGO!8 (6ED1052-xyy08-0BA0 FS:01 / Firmware version < V1.82.02). The integrated webserver does not invalidate the Session ID upon user logout. An attacker that successfully extracted a valid Session ID is able to use it even after the user logs out. The security vulnerability could be exploited by an attacker in a privileged network position who is able to read the communication between the affected device and the user or by an attacker who is able to obtain valid Session IDs through other means. The user must invoke a session to the affected device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in TIM 3V-IE (incl. SIPLUS NET variants) (All versions < V2.8), TIM 3V-IE Advanced (incl. SIPLUS NET variants) (All versions < V2.8), TIM 3V-IE DNP3 (incl. SIPLUS NET variants) (All versions < V3.3), TIM 4R-IE (incl. SIPLUS NET variants) (All versions < V2.8), TIM 4R-IE DNP3 (incl. SIPLUS NET variants) (All versions < V3.3). The affected versions contain an open debug port that is available under certain specific conditions. The vulnerability is only available if the IP address is configured to 192.168.1.2. If available, the debug port could be exploited by an attacker with network access to the device. No user interaction is required to exploit this vulnerability. The vulnerability impacts confidentiality, integrity, and availability of the affected device. At the stage of publishing this security advisory no public exploitation is known.
A vulnerability has been identified in POWER METER SICAM Q100 (All versions < V2.50), POWER METER SICAM Q100 (All versions < V2.50), POWER METER SICAM Q100 (All versions < V2.50), POWER METER SICAM Q100 (All versions < V2.50). Affected devices do not renew the session cookie after login/logout and also accept user defined session cookies. An attacker could overwrite the stored session cookie of a user. After the victim logged in, the attacker is given access to the user's account through the activated session.
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_Loader.dll library in affected applications lacks proper validation of user-supplied data when parsing BMP files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13057)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_Loader.dll library in affected applications lacks proper validation of user-supplied data prior to performing further free operations on an object when parsing BMP files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13060)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_Loader.dll library in affected applications lacks proper validation of user-supplied data prior to performing further free operations on an object when parsing BMP files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13196)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Jt981.dll library in affected applications lacks proper validation of user-supplied data prior to performing further free operations on an object when parsing JT files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13430)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Gif_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing GIF files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13023