Cisco IOS 12.1 through 12.4, and 15.0M before 15.0(1)M1, allows remote attackers to cause a denial of service (interface queue wedge) via malformed H.323 packets, aka Bug ID CSCta19962.
A vulnerability in the Internet Key Exchange version 2 (IKEv2) protocol for VPN termination of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient input validation. An attacker could exploit this vulnerability by sending crafted IKEv2 traffic to an affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition.
A vulnerability in the process that classifies traffic that is going to the Unified Threat Defense (UTD) component of Cisco IOS XE Software in controller mode could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability exists because UTD improperly handles certain packets as those packets egress an SD-WAN IPsec tunnel. An attacker could exploit this vulnerability by sending crafted traffic through an SD-WAN IPsec tunnel that is configured on an affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition. Note: SD-WAN tunnels that are configured with Generic Routing Encapsulation (GRE) are not affected by this vulnerability.
A vulnerability in the VPN and management web servers of the Cisco Adaptive Security Virtual Appliance (ASAv) and Cisco Secure Firewall Threat Defense Virtual (FTDv), formerly Cisco Firepower Threat Defense Virtual, platforms could allow an unauthenticated, remote attacker to cause the virtual devices to run out of system memory, which could cause SSL VPN connection processing to slow down and eventually cease all together. This vulnerability is due to a lack of proper memory management for new incoming SSL/TLS connections on the virtual platforms. An attacker could exploit this vulnerability by sending a large number of new incoming SSL/TLS connections to the targeted virtual platform. A successful exploit could allow the attacker to deplete system memory, resulting in a denial of service (DoS) condition. The memory could be reclaimed slowly if the attack traffic is stopped, but a manual reload may be required to restore operations quickly.
A vulnerability in the Locator ID Separation Protocol (LISP) feature of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause an affected device to reload. This vulnerability is due to the incorrect handling of LISP packets. An attacker could exploit this vulnerability by sending a crafted LISP packet to an affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a denial of service (DoS) condition. Note: This vulnerability could be exploited over either IPv4 or IPv6 transport.
A vulnerability in the IKEv1 fragmentation code of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause a heap underflow, resulting in an affected device reloading. This vulnerability exists because crafted, fragmented IKEv1 packets are not properly reassembled. An attacker could exploit this vulnerability by sending crafted UDP packets to an affected system. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a denial of service (DoS) condition. Note: Only traffic that is directed to the affected system can be used to exploit this vulnerability. This vulnerability can be triggered by IPv4 and IPv6 traffic..
A vulnerability in the DHCP snooping feature of Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause an affected device to reload unexpectedly, resulting in a denial of service (DoS) condition. This vulnerability is due to a crafted IPv4 DHCP request packet being mishandled when endpoint analytics are enabled. An attacker could exploit this vulnerability by sending a crafted DHCP request through an affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition. Note: The attack vector is listed as network because a DHCP relay anywhere on the network could allow exploits from networks other than the adjacent one.
Multiple vulnerabilities in the Cisco AnyConnect VPN server of Cisco Meraki MX and Cisco Meraki Z Series Teleworker Gateway devices could allow an unauthenticated, remote attacker to cause a DoS condition in the AnyConnect service on an affected device. These vulnerabilities are due to insufficient validation of client-supplied parameters while establishing an SSL VPN session. An attacker could exploit these vulnerabilities by sending a crafted HTTPS request to the VPN server of an affected device. A successful exploit could allow the attacker to cause the Cisco AnyConnect VPN server to restart, resulting in the failure of the established SSL VPN connections and forcing remote users to initiate a new VPN connection and reauthenticate. A sustained attack could prevent new SSL VPN connections from being established. Note: When the attack traffic stops, the Cisco AnyConnect VPN server recovers gracefully without requiring manual intervention.
Multiple vulnerabilities in the Cisco AnyConnect VPN server of Cisco Meraki MX and Cisco Meraki Z Series Teleworker Gateway devices could allow an unauthenticated, remote attacker to cause a DoS condition in the AnyConnect service on an affected device. These vulnerabilities are due to insufficient validation of client-supplied parameters while establishing an SSL VPN session. An attacker could exploit these vulnerabilities by sending a crafted HTTPS request to the VPN server of an affected device. A successful exploit could allow the attacker to cause the Cisco AnyConnect VPN server to restart, resulting in the failure of the established SSL VPN connections and forcing remote users to initiate a new VPN connection and reauthenticate. A sustained attack could prevent new SSL VPN connections from being established. Note: When the attack traffic stops, the Cisco AnyConnect VPN server recovers gracefully without requiring manual intervention.
A vulnerability in the IPv4 Software-Defined Access (SD-Access) fabric edge node feature of Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause high CPU utilization and stop all traffic processing, resulting in a denial of service (DoS) condition on an affected device. This vulnerability is due to improper handling of certain IPv4 packets. An attacker could exploit this vulnerability by sending certain IPv4 packets to an affected device. A successful exploit could allow the attacker to cause the device to exhaust CPU resources and stop processing traffic, resulting in a DoS condition.
Unspecified vulnerability in the Session Border Controller (SBC) before 3.0(2) for Cisco 7600 series routers allows remote attackers to cause a denial of service (SBC card reload) via crafted packets to TCP port 2000.
A vulnerability in the implementation of the IPv4 fragmentation reassembly code in Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to improper management of resources during fragment reassembly. An attacker could exploit this vulnerability by sending specific sizes of fragmented packets to an affected device or through a Virtual Fragmentation Reassembly (VFR)-enabled interface on an affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition. Note: This vulnerability affects Cisco ASR 1000 Series Aggregation Services Routers and Cisco cBR-8 Converged Broadband Routers if they are running Cisco IOS XE Software Release 17.12.1 or 17.12.1a.
Unspecified vulnerability in Cisco IOS 12.0 through 12.4, when SIP voice services are enabled, allows remote attackers to cause a denial of service (device crash) via a valid SIP message.
Memory leak in the Session Initiation Protocol (SIP) implementation in Cisco IOS 12.2 through 12.4, when VoIP is configured, allows remote attackers to cause a denial of service (memory consumption and voice-service outage) via unspecified valid SIP messages.
Unspecified vulnerability in Cisco Unified Communications Manager (CUCM, formerly CallManager) and Unified Presence Server (CUPS) allows remote attackers to cause a denial of service (loss of cluster services) via unspecified vectors, aka (1) CSCsj09859 and (2) CSCsj19985.
A vulnerability in the DHCP Snooping feature of Cisco IOS XE Software on Software-Defined Access (SD-Access) fabric edge nodes could allow an unauthenticated, remote attacker to cause high CPU utilization on an affected device, resulting in a denial of service (DoS) condition that requires a manual reload to recover. This vulnerability is due to improper handling of IPv4 DHCP packets. An attacker could exploit this vulnerability by sending certain IPv4 DHCP packets to an affected device. A successful exploit could allow the attacker to cause the device to exhaust CPU resources and stop processing traffic, resulting in a DoS condition that requires a manual reload to recover.
A vulnerability in the External Border Gateway Protocol (eBGP) implementation of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability exists because eBGP traffic is mapped to a shared hardware rate-limiter queue. An attacker could exploit this vulnerability by sending large amounts of network traffic with certain characteristics through an affected device. A successful exploit could allow the attacker to cause eBGP neighbor sessions to be dropped, leading to a DoS condition in the network.
A vulnerability in certain IPv4 fragment-processing functions of Cisco Remote PHY Software could allow an unauthenticated, remote attacker to impact traffic passing through a device, potentially causing a denial of service (DoS) condition. The vulnerability is due to the affected software not validating and calculating certain numerical values in IPv4 packets that are sent to an affected device. An attacker could exploit this vulnerability by sending malformed IPv4 traffic to an affected device. A successful exploit could allow the attacker to disrupt the flow of certain IPv4 traffic passing through an affected device, which could result in a DoS condition.
A vulnerability in the Snort 2 and Snort 3 TCP and UDP detection engine of Cisco Firepower Threat Defense (FTD) Software for Cisco Firepower 2100 Series Appliances could allow an unauthenticated, remote attacker to cause memory corruption, which could cause the Snort detection engine to restart unexpectedly. This vulnerability is due to improper memory management when the Snort detection engine processes specific TCP or UDP packets. An attacker could exploit this vulnerability by sending crafted TCP or UDP packets through a device that is inspecting traffic using the Snort detection engine. A successful exploit could allow the attacker to restart the Snort detection engine repeatedly, which could cause a denial of service (DoS) condition. The DoS condition impacts only the traffic through the device that is examined by the Snort detection engine. The device can still be managed over the network. Note: Once a memory block is corrupted, it cannot be cleared until the Cisco Firepower 2100 Series Appliance is manually reloaded. This means that the Snort detection engine could crash repeatedly, causing traffic that is processed by the Snort detection engine to be dropped until the device is manually reloaded.
Unspecified vulnerability in Cisco IOS 12.2 and 12.4, when the L2TP mgmt daemon process is enabled, allows remote attackers to cause a denial of service (device reload) via a crafted L2TP packet.
A vulnerability in the management and VPN web servers for Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause the device to reload unexpectedly, resulting in a denial of service (DoS) condition. This vulnerability is due to incomplete error checking when parsing an HTTP header. An attacker could exploit this vulnerability by sending a crafted HTTP request to a targeted web server on a device. A successful exploit could allow the attacker to cause a DoS condition when the device reloads.
A vulnerability in the multicast traceroute version 2 (Mtrace2) feature of Cisco IOS XR Software could allow an unauthenticated, remote attacker to exhaust the UDP packet memory of an affected device. This vulnerability exists because the Mtrace2 code does not properly handle packet memory. An attacker could exploit this vulnerability by sending crafted packets to an affected device. A successful exploit could allow the attacker to exhaust the incoming UDP packet memory. The affected device would not be able to process higher-level UDP-based protocols packets, possibly causing a denial of service (DoS) condition. Note: This vulnerability can be exploited using IPv4 or IPv6.
The Cisco Intrusion Prevention System (IPS) and IOS with Firewall/IPS Feature Set do not properly handle certain full-width and half-width Unicode character encodings, which might allow remote attackers to evade detection of HTTP traffic.
Cisco FirePOWER System Software 5.3.x through 5.3.0.6 and 5.4.x through 5.4.0.3 on FirePOWER 7000 and 8000 appliances, and on the Advanced Malware Protection (AMP) for Networks component on these appliances, allows remote attackers to cause a denial of service (packet-processing outage) via crafted packets, aka Bug ID CSCuu86214.
A vulnerability with the handling of MPLS traffic for Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause the netstack process to unexpectedly restart, which could cause the device to stop processing network traffic or to reload. This vulnerability is due to lack of proper error checking when processing an ingress MPLS frame. An attacker could exploit this vulnerability by sending a crafted IPv6 packet that is encapsulated within an MPLS frame to an MPLS-enabled interface of the targeted device. A successful exploit could allow the attacker to cause a denial of service (DoS) condition. Note: The IPv6 packet can be generated multiple hops away from the targeted device and then encapsulated within MPLS. The DoS condition may occur when the NX-OS device processes the packet.
The Wide Area Application Services (WAAS) Express implementation in Cisco IOS 15.1 through 15.5 allows remote attackers to cause a denial of service (device reload) via a crafted TCP segment, aka Bug ID CSCuq59708.
Cisco IOS 15.3 and 15.4, Cisco IOS XE 3.8 through 3.11, and Cisco Unified Communications Manager allow remote attackers to cause a denial of service (device reload) via malformed SIP messages, aka Bug ID CSCuj23293.
Cisco Unified Communications Manager IM and Presence Service 9.1(1) SU6, 9.1(1) SU6a, 9.1(1) SU7, 10.5(2) SU2, 10.5(2) SU2a, 11.0(1) SU1, and 11.5(1) allows remote attackers to cause a denial of service (sipd process restart) via crafted headers in a SIP packet, aka Bug ID CSCva39072.
The administration interface on Cisco DPQ3925 devices with firmware r1 allows remote attackers to cause a denial of service (device restart) via a crafted HTTP request, aka Bug ID CSCup48105.
The HTTP framework on Cisco SPA300, SPA500, and SPA51x devices allows remote attackers to cause a denial of service (device outage) via a series of malformed HTTP requests, aka Bug ID CSCut67385.
The DHCPv6 relay implementation in Cisco Adaptive Security Appliance (ASA) Software 9.4.1 allows remote attackers to cause a denial of service (device reload) via crafted DHCPv6 packets, aka Bug ID CSCus23248.
Unspecified vulnerability in Cisco IOS 12.0 through 12.4 allows remote attackers to cause a denial of service (device reload) via a crafted Protocol Independent Multicast (PIM) packet.
Memory leak in Cisco AsyncOS through 8.8 on Web Security Appliance (WSA) devices allows remote attackers to cause a denial of service (memory consumption) via an unspecified HTTP status code, aka Bug ID CSCur28305.
Unspecified vulnerability in the IPSec Manager Service for Cisco Unified CallManager (CUCM) 5.0 before 5.0(4a)SU1 and Cisco Unified Presence Server (CUPS) 1.0 before 1.0(3) allows remote attackers to cause a denial of service (loss of cluster services) via a "specific UDP packet" to UDP port 8500, aka bug ID CSCsg60949.
Linux kernel versions 4.9+ can be forced to make very expensive calls to tcp_collapse_ofo_queue() and tcp_prune_ofo_queue() for every incoming packet which can lead to a denial of service.
A vulnerability in the DHCPv6 relay agent of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to improper handling of specific fields in a DHCPv6 RELAY-REPLY message. An attacker could exploit this vulnerability by sending a crafted DHCPv6 packet to any IPv6 address that is configured on an affected device. A successful exploit could allow the attacker to cause the dhcp_snoop process to crash and restart multiple times, causing the affected device to reload and resulting in a DoS condition.
Memory leak in Cisco AsyncOS 8.5 through 9.0 before 9.0.1-162 on Web Security Appliance (WSA) devices allows remote attackers to cause a denial of service (memory consumption) via an HTTP file-range request for cached content, aka Bug ID CSCuw97270.
The Adaptive Security Appliance (ASA) 5585-X FirePOWER Security Services Processor (SSP) module for Cisco ASA with FirePOWER Services 5.3.1 through 6.0.0 misconfigures kernel logging, which allows remote attackers to cause a denial of service (resource consumption, and inspection outage or module outage) via a flood of crafted IP traffic, aka Bug ID CSCux19922.
Cisco IOS XR 5.x through 5.2.5 on NCS 6000 devices allows remote attackers to cause a denial of service (timer consumption and Route Processor reload) via crafted SSH traffic, aka Bug ID CSCux76819.
A vulnerability in the email attachment scanning functionality of the Advanced Malware Protection (AMP) feature of Cisco AsyncOS Software for Cisco Email Security Appliances could allow an unauthenticated, remote attacker to cause an affected device to stop scanning and forwarding email messages due to a denial of service (DoS) condition. Affected Products: This vulnerability affects Cisco AsyncOS Software releases 9.7.1 and later, prior to the first fixed release, for both virtual and hardware Cisco Email Security Appliances, if the AMP feature is configured to scan incoming email attachments. More Information: CSCuy99453. Known Affected Releases: 9.7.1-066. Known Fixed Releases: 10.0.0-125 9.7.1-207 9.7.2-047.
Cisco IOS 15.0 through 15.5 and IOS XE 3.3 through 3.16 allow remote attackers to cause a denial of service (device reload) via a crafted DHCPv6 Relay message, aka Bug ID CSCus55821.
The Smart Install client implementation in Cisco IOS 12.2, 15.0, and 15.2 and IOS XE 3.2 through 3.7 allows remote attackers to cause a denial of service (device reload) via crafted image list parameters in a Smart Install packet, aka Bug ID CSCuv45410.
Cisco AireOS 4.1 through 7.4.120.0, 7.5.x, and 7.6.100.0 on Wireless LAN Controller (WLC) devices allows remote attackers to cause a denial of service (device reload) via a crafted HTTP request, aka Bug ID CSCun86747.
A vulnerability in the SIP inspection engine of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a crash and reload of an affected device, resulting in a denial of service (DoS) condition.The vulnerability is due to a crash that occurs during a hash lookup for a SIP pinhole connection. An attacker could exploit this vulnerability by sending crafted SIP traffic through an affected device. A successful exploit could allow the attacker to cause a crash and reload of the affected device.
A vulnerability in the Rate Limiting Network Address Translation (NAT) feature of Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause high CPU utilization in the Cisco QuantumFlow Processor of an affected device, resulting in a denial of service (DoS) condition. This vulnerability is due to mishandling of the rate limiting feature within the QuantumFlow Processor. An attacker could exploit this vulnerability by sending large amounts of traffic that would be subject to NAT and rate limiting through an affected device. A successful exploit could allow the attacker to cause the QuantumFlow Processor utilization to reach 100 percent on the affected device, resulting in a DoS condition.
A vulnerability in the Multi-Pod or Multi-Site network configurations for Cisco Nexus 9000 Series Fabric Switches in Application Centric Infrastructure (ACI) mode could allow an unauthenticated, remote attacker to unexpectedly restart the device, resulting in a denial of service (DoS) condition. This vulnerability exists because TCP traffic sent to a specific port on an affected device is not properly sanitized. An attacker could exploit this vulnerability by sending crafted TCP data to a specific port that is listening on a public-facing IP address for the Multi-Pod or Multi-Site configuration. A successful exploit could allow the attacker to cause the device to restart unexpectedly, resulting in a DoS condition.
Memory leak in Cisco Adaptive Security Appliances (ASA) 5500 Series and PIX Security Appliances 8.0 before 8.0(4) and 8.1 before 8.1(2) allows remote attackers to cause a denial of service (memory consumption) via an unspecified sequence of packets, related to the "initialization code for the hardware crypto accelerator."
Cisco IOS after 12.3(14)T, 12.3(8)YC1, 12.3(8)YG, and 12.4, with voice support and without Session Initiated Protocol (SIP) configured, allows remote attackers to cause a denial of service (crash) by sending a crafted packet to port 5060/UDP.
A vulnerability with the Border Gateway Protocol (BGP) for Cisco Nexus 9000 Series Fabric Switches in Application Centric Infrastructure (ACI) mode could allow an unauthenticated, remote attacker to cause a routing process to crash, which could lead to a denial of service (DoS) condition. This vulnerability is due to an issue with the installation of routes upon receipt of a BGP update. An attacker could exploit this vulnerability by sending a crafted BGP update to an affected device. A successful exploit could allow the attacker to cause the routing process to crash, which could cause the device to reload. This vulnerability applies to both Internal BGP (IBGP) and External BGP (EBGP). Note: The Cisco implementation of BGP accepts incoming BGP traffic from explicitly configured peers only. To exploit this vulnerability, an attacker would need to send a specific BGP update message over an established TCP connection that appears to come from a trusted BGP peer.
Unspecified vulnerability in Cisco Adaptive Security Appliances (ASA) 5500 Series and PIX Security Appliances 7.2(4)9 and 7.2(4)10 allows remote attackers to cause a denial of service (device reload) via a crafted IPv6 packet.