named in ISC BIND 9.x before 9.9.9-P4, 9.10.x before 9.10.4-P4, and 9.11.x before 9.11.0-P1 allows remote attackers to cause a denial of service (assertion failure and daemon exit) via a DNAME record in the answer section of a response to a recursive query, related to db.c and resolver.c.
A denial of service flaw was found in OpenSSL 0.9.8, 1.0.1, 1.0.2 through 1.0.2h, and 1.1.0 in the way the TLS/SSL protocol defined processing of ALERT packets during a connection handshake. A remote attacker could use this flaw to make a TLS/SSL server consume an excessive amount of CPU and fail to accept connections from other clients.
The OPENSSL_LH_flush() function, which empties a hash table, contains a bug that breaks reuse of the memory occuppied by the removed hash table entries. This function is used when decoding certificates or keys. If a long lived process periodically decodes certificates or keys its memory usage will expand without bounds and the process might be terminated by the operating system causing a denial of service. Also traversing the empty hash table entries will take increasingly more time. Typically such long lived processes might be TLS clients or TLS servers configured to accept client certificate authentication. The function was added in the OpenSSL 3.0 version thus older releases are not affected by the issue. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2).
On vulnerable configurations, the named daemon may, in some circumstances, terminate with an assertion failure. Vulnerable configurations are those that include a reference to http within the listen-on statements in their named.conf. TLS is used by both DNS over TLS (DoT) and DNS over HTTPS (DoH), but configurations using DoT alone are unaffected. Affects BIND 9.18.0 -> 9.18.2 and version 9.19.0 of the BIND 9.19 development branch.
The crypto_xmit function in ntpd in NTP 4.2.x before 4.2.8p4, and 4.3.x before 4.3.77 allows remote attackers to cause a denial of service (crash) via crafted packets containing particular autokey operations. NOTE: This vulnerability exists due to an incomplete fix for CVE-2014-9750.
An out-of-bounds read vulnerability was discovered in linux kernel in the smc protocol stack, causing remote dos.
The IP stack in the Linux kernel through 4.8.2 allows remote attackers to cause a denial of service (stack consumption and panic) or possibly have unspecified other impact by triggering use of the GRO path for large crafted packets, as demonstrated by packets that contain only VLAN headers, a related issue to CVE-2016-8666.
If an X.509 certificate contains a malformed policy constraint and policy processing is enabled, then a write lock will be taken twice recursively. On some operating systems (most widely: Windows) this results in a denial of service when the affected process hangs. Policy processing being enabled on a publicly facing server is not considered to be a common setup. Policy processing is enabled by passing the `-policy' argument to the command line utilities or by calling the `X509_VERIFY_PARAM_set1_policies()' function. Update (31 March 2023): The description of the policy processing enablement was corrected based on CVE-2023-0466.
Jetty is a Java based web server and servlet engine. An HTTP/2 SSL connection that is established and TCP congested will be leaked when it times out. An attacker can cause many connections to end up in this state, and the server may run out of file descriptors, eventually causing the server to stop accepting new connections from valid clients. The vulnerability is patched in 9.4.54, 10.0.20, 11.0.20, and 12.0.6.
Linux 2.2.3 and earlier allow a remote attacker to perform an IP fragmentation attack, causing a denial of service.
The ping command in Linux 2.0.3x allows local users to cause a denial of service by sending large packets with the -R (record route) option.
Denial of service in RPC portmapper allows attackers to register or unregister RPC services or spoof RPC services using a spoofed source IP address such as 127.0.0.1.
A vulnerability in Node.js HTTP servers allows an attacker to send a specially crafted HTTP request with chunked encoding, leading to resource exhaustion and denial of service (DoS). The server reads an unbounded number of bytes from a single connection, exploiting the lack of limitations on chunk extension bytes. The issue can cause CPU and network bandwidth exhaustion, bypassing standard safeguards like timeouts and body size limits.
A remote denial of service vulnerability was found in the Linux kernel’s TIPC kernel module. The while loop in tipc_link_xmit() hits an unknown state while attempting to parse SKBs, which are not in the queue. Sending two small UDP packets to a system with a UDP bearer results in the CPU utilization for the system to instantly spike to 100%, causing a denial of service condition.
nfqnl_mangle in net/netfilter/nfnetlink_queue.c in the Linux kernel through 5.18.14 allows remote attackers to cause a denial of service (panic) because, in the case of an nf_queue verdict with a one-byte nfta_payload attribute, an skb_pull can encounter a negative skb->len.
A vulnerability classified as problematic was found in Linux Kernel. This vulnerability affects the function macvlan_handle_frame of the file drivers/net/macvlan.c of the component skb. The manipulation leads to memory leak. The attack can be initiated remotely. It is recommended to apply a patch to fix this issue. The identifier of this vulnerability is VDB-211024.
SQLite 1.0.12 through 3.39.x before 3.39.2 sometimes allows an array-bounds overflow if billions of bytes are used in a string argument to a C API.
IBM Sterling Partner Engagement Manager 6.1, 6.2, and Cloud 22.2 do not limit the length of a connection which could cause the server to become unresponsive. IBM X-Force ID: 230932.
Linux DC++ (linuxdcpp) before 0.707 allows remote attackers to cause a denial of service (crash) via "partial file list requests" that trigger a NULL pointer dereference.
Versions affected: BIND 9.18.0 When a vulnerable version of named receives a series of specific queries, the named process will eventually terminate due to a failed assertion check.
The huft_build function in inflate.c in the zlib routines in the Linux kernel before 2.6.12.5 returns the wrong value, which allows remote attackers to cause a denial of service (kernel crash) via a certain compressed file that leads to a null pointer dereference, a different vulnerability than CVE-2005-2458.
When the vulnerability is triggered the BIND process will exit. BIND 9.18.0
In the Linux kernel, the following vulnerability has been resolved: net: sched: fix memory leak in tcindex_partial_destroy_work Syzbot reported memory leak in tcindex_set_parms(). The problem was in non-freed perfect hash in tcindex_partial_destroy_work(). In tcindex_set_parms() new tcindex_data is allocated and some fields from old one are copied to new one, but not the perfect hash. Since tcindex_partial_destroy_work() is the destroy function for old tcindex_data, we need to free perfect hash to avoid memory leak.
In the Linux kernel, the following vulnerability has been resolved: ethtool: strset: fix message length calculation Outer nest for ETHTOOL_A_STRSET_STRINGSETS is not accounted for. This may result in ETHTOOL_MSG_STRSET_GET producing a warning like: calculated message payload length (684) not sufficient WARNING: CPU: 0 PID: 30967 at net/ethtool/netlink.c:369 ethnl_default_doit+0x87a/0xa20 and a splat. As usually with such warnings three conditions must be met for the warning to trigger: - there must be no skb size rounding up (e.g. reply_size of 684); - string set must be per-device (so that the header gets populated); - the device name must be at least 12 characters long. all in all with current user space it looks like reading priv flags is the only place this could potentially happen. Or with syzbot :)
In the Linux kernel, the following vulnerability has been resolved: riscv, bpf: Fix potential NULL dereference The bpf_jit_binary_free() function requires a non-NULL argument. When the RISC-V BPF JIT fails to converge in NR_JIT_ITERATIONS steps, jit_data->header will be NULL, which triggers a NULL dereference. Avoid this by checking the argument, prior calling the function.
In the Linux kernel, the following vulnerability has been resolved: can: m_can: m_can_read_fifo: fix memory leak in error branch In m_can_read_fifo(), if the second call to m_can_fifo_read() fails, the function jump to the out_fail label and returns without calling m_can_receive_skb(). This means that the skb previously allocated by alloc_can_skb() is not freed. In other terms, this is a memory leak. This patch adds a goto label to destroy the skb if an error occurs. Issue was found with GCC -fanalyzer, please follow the link below for details.
The MATCH_ASSOC function in NTP before version 4.2.8p9 and 4.3.x before 4.3.92 allows remote attackers to cause an out-of-bounds reference via an addpeer request with a large hmode value.
The tcp_cwnd_reduction function in net/ipv4/tcp_input.c in the Linux kernel before 4.3.5 allows remote attackers to cause a denial of service (divide-by-zero error and system crash) via crafted TCP traffic.
The KEYCTL_JOIN_SESSION_KEYRING operation in the Linux kernel before 2.6.12.5 contains an error path that does not properly release the session management semaphore, which allows local users or remote attackers to cause a denial of service (semaphore hang) via a new session keyring (1) with an empty name string, (2) with a long name string, (3) with the key quota reached, or (4) ENOMEM.
sshd in OpenSSH before 7.4 allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via an out-of-sequence NEWKEYS message, as demonstrated by Honggfuzz, related to kex.c and packet.c.
GNU Multiple Precision Arithmetic Library (GMP) through 6.2.1 has an mpz/inp_raw.c integer overflow and resultant buffer overflow via crafted input, leading to a segmentation fault on 32-bit platforms.
net/http in Go before 1.16.12 and 1.17.x before 1.17.5 allows uncontrolled memory consumption in the header canonicalization cache via HTTP/2 requests.
Apache Tomcat 8.5.0 to 8.5.63, 9.0.0-M1 to 9.0.43 and 10.0.0-M1 to 10.0.2 did not properly validate incoming TLS packets. When Tomcat was configured to use NIO+OpenSSL or NIO2+OpenSSL for TLS, a specially crafted packet could be used to trigger an infinite loop resulting in a denial of service.
fs/nfs/nfs4proc.c in the NFS client in the Linux kernel before 4.2.2 does not properly initialize memory for migration recovery operations, which allows remote NFS servers to cause a denial of service (NULL pointer dereference and panic) via crafted network traffic.
net/ipv6/addrconf.c in the IPv6 stack in the Linux kernel before 4.0 does not validate attempted changes to the MTU value, which allows context-dependent attackers to cause a denial of service (packet loss) via a value that is (1) smaller than the minimum compliant value or (2) larger than the MTU of an interface, as demonstrated by a Router Advertisement (RA) message that is not validated by a daemon, a different vulnerability than CVE-2015-0272. NOTE: the scope of CVE-2015-0272 is limited to the NetworkManager product.
A vulnerability was found in RESTEasy, where RootNode incorrectly caches routes. This issue results in hash flooding, leading to slower requests with higher CPU time spent searching and adding the entry. This flaw allows an attacker to cause a denial of service.
The crypto_xmit function in ntpd in NTP 4.2.x before 4.2.8p4, and 4.3.x before 4.3.77 allows remote attackers to cause a denial of service (crash). NOTE: This vulnerability exists due to an incomplete fix for CVE-2014-9750.
The ntpd client in NTP 4.x before 4.2.8p4 and 4.3.x before 4.3.77 allows remote attackers to cause a denial of service via a number of crafted "KOD" messages.
Memory leak in the CRYPTO_ASSOC function in ntpd in NTP 4.2.x before 4.2.8p4, and 4.3.x before 4.3.77 allows remote attackers to cause a denial of service (memory consumption).
An integer overflow can occur in NTP-dev.4.3.70 leading to an out-of-bounds memory copy operation when processing a specially crafted private mode packet. The crafted packet needs to have the correct message authentication code and a valid timestamp. When processed by the NTP daemon, it leads to an immediate crash.
A vulnerability was found in GnuTLS, where a cockpit (which uses gnuTLS) rejects a certificate chain with distributed trust. This issue occurs when validating a certificate chain with cockpit-certificate-ensure. This flaw allows an unauthenticated, remote client or attacker to initiate a denial of service attack.
In archive/zip in Go before 1.16.8 and 1.17.x before 1.17.1, a crafted archive header (falsely designating that many files are present) can cause a NewReader or OpenReader panic. NOTE: this issue exists because of an incomplete fix for CVE-2021-33196.
In FreeBSD 12.0-STABLE before r351264, 12.0-RELEASE before 12.0-RELEASE-p10, 11.3-STABLE before r351265, 11.3-RELEASE before 11.3-RELEASE-p3, and 11.2-RELEASE before 11.2-RELEASE-p14, the kernel driver for /dev/midistat implements a read handler that is not thread-safe. A multi-threaded program can exploit races in the handler to copy out kernel memory outside the boundaries of midistat's data buffer.
The (1) udp_recvmsg and (2) udpv6_recvmsg functions in the Linux kernel before 4.0.6 provide inappropriate -EAGAIN return values, which allows remote attackers to cause a denial of service (EPOLLET epoll application read outage) via an incorrect checksum in a UDP packet, a different vulnerability than CVE-2015-5364.
A flaw was found in Undertow that tripped the client-side invocation timeout with certain calls made over HTTP2. This flaw allows an attacker to carry out denial of service attacks.
A flaw was found in the Linux kernel's NVMe driver. This issue may allow an unauthenticated malicious actor to send a set of crafted TCP packages when using NVMe over TCP, leading the NVMe driver to a NULL pointer dereference in the NVMe driver, causing kernel panic and a denial of service.
A flaw was found in the Linux kernel's NVMe driver. This issue may allow an unauthenticated malicious actor to send a set of crafted TCP packages when using NVMe over TCP, leading the NVMe driver to a NULL pointer dereference in the NVMe driver and causing kernel panic and a denial of service.
A flaw was found in the Linux kernel's NVMe driver. This issue may allow an unauthenticated malicious actor to send a set of crafted TCP packages when using NVMe over TCP, leading the NVMe driver to a NULL pointer dereference in the NVMe driver, causing kernel panic and a denial of service.
To keep its cache database efficient, `named` running as a recursive resolver occasionally attempts to clean up the database. It uses several methods, including some that are asynchronous: a small chunk of memory pointing to the cache element that can be cleaned up is first allocated and then queued for later processing. It was discovered that if the resolver is continuously processing query patterns triggering this type of cache-database maintenance, `named` may not be able to handle the cleanup events in a timely manner. This in turn enables the list of queued cleanup events to grow infinitely large over time, allowing the configured `max-cache-size` limit to be significantly exceeded. This issue affects BIND 9 versions 9.16.0 through 9.16.45 and 9.16.8-S1 through 9.16.45-S1.
The Bzip2 decompression decoder function doesn't allow setting size restrictions on the decompressed output data (which affects the allocation size used during decompression). All users of Bzip2Decoder are affected. The malicious input can trigger an OOME and so a DoS attack