In eatt_l2cap_reconfig_completed of eatt_impl.h, there is a possible out of bounds write due to an integer overflow. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation.
An integer overflow vulnerability in all UniFi Access Points and Switches, excluding the Switch Flex Mini, with SNMP Monitoring and default settings enabled could allow a Remote Code Execution (RCE). Affected Products: All UniFi Access Points (Version 6.5.50 and earlier) All UniFi Switches (Version 6.5.32 and earlier) -USW Flex Mini excluded. Mitigation: Update UniFi Access Points to Version 6.5.62 or later. Update the UniFi Switches to Version 6.5.59 or later.
SerialiseValue in RenderDoc before 1.27 allows an Integer Overflow with a resultant Buffer Overflow. 0xffffffff is sign-extended to 0xffffffffffffffff (SIZE_MAX) and then there is an attempt to add 1.
StreamReader::ReadFromExternal in RenderDoc before 1.27 allows an Integer Overflow with a resultant Buffer Overflow. It uses uint32_t(m_BufferSize-m_InputSize) even though m_InputSize can exceed m_BufferSize.
There exists a heap buffer overflow vulnerable in Abseil-cpp. The sized constructors, reserve(), and rehash() methods of absl::{flat,node}hash{set,map} did not impose an upper bound on their size argument. As a result, it was possible for a caller to pass a very large size that would cause an integer overflow when computing the size of the container's backing store, and a subsequent out-of-bounds memory write. Subsequent accesses to the container might also access out-of-bounds memory. We recommend upgrading past commit 5a0e2cb5e3958dd90bb8569a2766622cb74d90c1
Buffer overflow can occur in In WLAN firmware while unwraping data using CCMP cipher suite during parsing of EAPOL handshake frame in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wired Infrastructure and Networking in APQ8009, APQ8017, APQ8053, APQ8064, APQ8096, APQ8096AU, APQ8098, IPQ6018, IPQ8074, MDM9206, MDM9207C, MDM9607, MDM9640, MDM9650, MSM8996AU, MSM8998, Nicobar, QCA4531, QCA6174A, QCA6564, QCA6574, QCA6574AU, QCA6584, QCA6584AU, QCA8081, QCA9377, QCA9379, QCA9886, QCN7605, QCS404, QCS405, QCS605, Rennell, SA6155P, SC7180, SC8180X, SDA660, SDA845, SDM630, SDM636, SDM660, SDM670, SDM710, SDM845, SDM850, SDX20, SDX24, SM6150, SM7150, SM8150, SXR1130, SXR2130
An issue was discovered in the ROS communications-related packages (aka ros_comm or ros-melodic-ros-comm) through 1.14.3. parseOptions() in tools/rosbag/src/record.cpp has an integer overflow when a crafted split option can be entered on the command line.
On Windows, Apache Portable Runtime 1.7.0 and earlier may write beyond the end of a stack based buffer in apr_socket_sendv(). This is a result of integer overflow.
Possible integer overflow while checking the length of frame which is a 32 bit integer and is added to another 32 bit integer which can lead to unexpected result during the check in Snapdragon Auto, Snapdragon Compute, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile in APQ8098, MDM9607, MSM8998, QCA6584, QCN7605, QCS605, SDA660, SDM630, SDM636, SDM660, SDM670, SDM710, SDM845, SDM850, SM6150, SM7150, SM8150, SXR1130
Buffer overflow in WLAN firmware while parsing GTK IE containing GTK key having length more than the buffer size in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wired Infrastructure and Networking in APQ8009, APQ8017, APQ8053, APQ8064, APQ8096AU, APQ8098, IPQ6018, IPQ8074, MDM9206, MDM9207C, MDM9607, MDM9640, MDM9650, MSM8996AU, MSM8998, Nicobar, QCA4531, QCA6174A, QCA6564, QCA6574, QCA6574AU, QCA6584, QCA6584AU, QCA8081, QCA9377, QCA9379, QCA9886, QCN7605, QCS404, QCS405, QCS605, Rennell, SA6155P, SC7180, SC8180X, SDA660, SDA845, SDM630, SDM636, SDM660, SDM670, SDM710, SDM845, SDM850, SDX20, SDX24, SM6150, SM7150, SM8150, SXR1130, SXR2130
Integer overflow occurs while playing the clip which is nonstandard in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables in APQ8009, APQ8017, APQ8053, APQ8064, APQ8096AU, APQ8098, MDM9206, MDM9207C, MDM9607, MSM8905, MSM8909, MSM8909W, MSM8917, MSM8920, MSM8937, MSM8939, MSM8940, MSM8953, MSM8996, MSM8996AU, Nicobar, QCS605, QM215, SA6155P, SDA660, SDA845, SDM429, SDM429W, SDM439, SDM450, SDM632, SDM660, SDM670, SDM710, SDM845, SDX20, SM6150, SM8150, SM8250, SXR1130, SXR2130
Integer overflow to buffer overflow vulnerability in PostScript image handling code used by the PostScript- and PDF-compatible interpreters due to incorrect buffer size calculation. in PostScript and PDF printers that use IPS versions prior to 2019.2 in PostScript and PDF printers that use IPS versions prior to 2019.2
Improper check in video driver while processing data from video firmware can lead to integer overflow and then buffer overflow in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables in APQ8009, APQ8017, APQ8053, APQ8096AU, APQ8098, MDM9206, MDM9207C, MDM9607, MDM9640, MDM9650, MSM8905, MSM8909W, MSM8917, MSM8920, MSM8937, MSM8940, MSM8953, MSM8996AU, MSM8998, Nicobar, QCS405, QCS605, QM215, SA6155P, SDA660, SDA845, SDM429, SDM439, SDM450, SDM630, SDM632, SDM636, SDM660, SDM670, SDM710, SDM845, SDX20, SDX24, SDX55, SM6150, SM7150, SM8150, SXR1130
Windows Lightweight Directory Access Protocol (LDAP) Remote Code Execution Vulnerability
In ParsePayloadHeader of payload_metadata.cc, there is a possible out of bounds write due to an integer overflow. This could lead to remote escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: Android-9. Android ID: A-113118184.
GStreamer is a library for constructing graphs of media-handling components. The program attempts to reallocate the memory pointed to by stream->samples to accommodate stream->n_samples + samples_count elements of type QtDemuxSample. The problem is that samples_count is read from the input file. And if this value is big enough, this can lead to an integer overflow during the addition. As a consequence, g_try_renew might allocate memory for a significantly smaller number of elements than intended. Following this, the program iterates through samples_count elements and attempts to write samples_count number of elements, potentially exceeding the actual allocated memory size and causing an OOB-write. This vulnerability is fixed in 1.24.10.
GStreamer is a library for constructing graphs of media-handling components. An integer underflow has been detected in the function qtdemux_parse_theora_extension within qtdemux.c. The vulnerability occurs due to an underflow of the gint size variable, which causes size to hold a large unintended value when cast to an unsigned integer. This 32-bit negative value is then cast to a 64-bit unsigned integer (0xfffffffffffffffa) in a subsequent call to gst_buffer_new_and_alloc. The function gst_buffer_new_allocate then attempts to allocate memory, eventually calling _sysmem_new_block. The function _sysmem_new_block adds alignment and header size to the (unsigned) size, causing the overflow of the 'slice_size' variable. As a result, only 0x89 bytes are allocated, despite the large input size. When the following memcpy call occurs in gst_buffer_fill, the data from the input file will overwrite the content of the GstMapInfo info structure. Finally, during the call to gst_memory_unmap, the overwritten memory may cause a function pointer hijack, as the mem->allocator->mem_unmap_full function is called with a corrupted pointer. This function pointer overwrite could allow an attacker to alter the execution flow of the program, leading to arbitrary code execution. This vulnerability is fixed in 1.24.10.
rdesktop versions up to and including v1.8.3 contain an Integer Overflow that leads to a Heap-Based Buffer Overflow in function process_bitmap_updates() and results in a memory corruption and probably even a remote code execution.
FreeRDP prior to version 2.0.0-rc4 contains an Integer Overflow that leads to a Heap-Based Buffer Overflow in function gdi_Bitmap_Decompress() and results in a memory corruption and probably even a remote code execution.
An integer overflow was addressed with improved input validation. This issue is fixed in Security Update 2022-004 Catalina, macOS Monterey 12.4. An attacker may be able to cause unexpected application termination or arbitrary code execution.
Memory corruption in WLAN due to integer overflow to buffer overflow while parsing GTK frames. in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables, Snapdragon Wired Infrastructure and Networking
An issue was discovered in libexpat before 2.6.3. dtdCopy in xmlparse.c can have an integer overflow for nDefaultAtts on 32-bit platforms (where UINT_MAX equals SIZE_MAX).
In filterMask of SkEmbossMaskFilter.cpp, there is a possible out of bounds write due to an integer overflow. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation.
Microsoft Edge (Chromium-based) Remote Code Execution Vulnerability
An Integer-based buffer overflow vulnerability in the SonicOS via IPSec allows a remote attacker in specific conditions to cause Denial of Service (DoS) and potentially execute arbitrary code by sending a specially crafted IKEv2 payload.
defineAttribute in xmlparse.c in Expat (aka libexpat) before 2.4.3 has an integer overflow.
build_model in xmlparse.c in Expat (aka libexpat) before 2.4.3 has an integer overflow.
rdesktop versions up to and including v1.8.3 contain an Integer Overflow that leads to a Heap-Based Buffer Overflow in the function rdp_in_unistr() and results in memory corruption and possibly even a remote code execution.
qemu_deliver_packet_iov in net/net.c in Qemu accepts packet sizes greater than INT_MAX, which allows attackers to cause a denial of service or possibly have unspecified other impact.
Memory corruption in bluetooth due to integer overflow while processing HFP-UNIT profile in Snapdragon Auto, Snapdragon Consumer IOT, Snapdragon Mobile, Snapdragon Voice & Music
An issue was discovered in a smart contract implementation for SingaporeCoinOrigin (SCO), an Ethereum token. The contract has an integer overflow. If the owner sets the value of sellPrice to a large number in setPrices() then the "amount * sellPrice" will cause an integer overflow in sell().
An issue was discovered in a smart contract implementation for EUC (EUC), an Ethereum token. The contract has an integer overflow. If the owner sets the value of buyPrice to a large number in setPrices() then the "msg.value * buyPrice" will cause an integer overflow in the fallback function.
Integer Overflow or Wraparound in GitHub repository publify/publify prior to 9.2.10.
Improper input validation together with an integer overflow in the EAP-TLS protocol implementation in PPPD may cause a crash, information disclosure, or authentication bypass. This implementation is distributed as a patch for PPPD 0.91, and includes the affected eap.c and eap-tls.c files. Configurations that use the `refuse-app` option are unaffected.
Certain D-Link, Edimax, NETGEAR, TP-Link, Tenda, and Western Digital devices are affected by an integer overflow by an unauthenticated attacker. Remote code execution from the WAN interface (TCP port 20005) cannot be ruled out; however, exploitability was judged to be of "rather significant complexity" but not "impossible." The overflow is in SoftwareBus_dispatchNormalEPMsgOut in the KCodes NetUSB kernel module. Affected NETGEAR devices are D7800 before 1.0.1.68, R6400v2 before 1.0.4.122, and R6700v3 before 1.0.4.122.
In versions of mruby up to and including 1.4.0, an integer overflow exists in src/vm.c::mrb_vm_exec() when handling OP_GETUPVAR in the presence of deep scope nesting, resulting in a use-after-free. An attacker that can cause Ruby code to be run can use this to possibly execute arbitrary code.
A vulnerability was found in SerenityOS. It has been rated as critical. Affected by this issue is the function initialize_typed_array_from_array_buffer in the library Userland/Libraries/LibJS/Runtime/TypedArray.cpp. The manipulation leads to integer overflow. The exploit has been disclosed to the public and may be used. Continious delivery with rolling releases is used by this product. Therefore, no version details of affected nor updated releases are available. The patch is identified as f6c6047e49f1517778f5565681fb64750b14bf60. It is recommended to apply a patch to fix this issue. VDB-222074 is the identifier assigned to this vulnerability.
A vulnerability has been identified in RUGGEDCOM i800, RUGGEDCOM i800NC, RUGGEDCOM i801, RUGGEDCOM i801NC, RUGGEDCOM i802, RUGGEDCOM i802NC, RUGGEDCOM i803, RUGGEDCOM i803NC, RUGGEDCOM M2100, RUGGEDCOM M2100F, RUGGEDCOM M2100NC, RUGGEDCOM M2200, RUGGEDCOM M2200F, RUGGEDCOM M2200NC, RUGGEDCOM M969, RUGGEDCOM M969F, RUGGEDCOM M969NC, RUGGEDCOM RMC30, RUGGEDCOM RMC30NC, RUGGEDCOM RMC8388 V4.X, RUGGEDCOM RMC8388 V5.X, RUGGEDCOM RMC8388NC V4.X, RUGGEDCOM RMC8388NC V5.X, RUGGEDCOM RP110, RUGGEDCOM RP110NC, RUGGEDCOM RS1600, RUGGEDCOM RS1600F, RUGGEDCOM RS1600FNC, RUGGEDCOM RS1600NC, RUGGEDCOM RS1600T, RUGGEDCOM RS1600TNC, RUGGEDCOM RS400, RUGGEDCOM RS400F, RUGGEDCOM RS400NC, RUGGEDCOM RS401, RUGGEDCOM RS401NC, RUGGEDCOM RS416, RUGGEDCOM RS416F, RUGGEDCOM RS416NC, RUGGEDCOM RS416NCv2 V4.X, RUGGEDCOM RS416NCv2 V5.X, RUGGEDCOM RS416P, RUGGEDCOM RS416PF, RUGGEDCOM RS416PNC, RUGGEDCOM RS416PNCv2 V4.X, RUGGEDCOM RS416PNCv2 V5.X, RUGGEDCOM RS416Pv2 V4.X, RUGGEDCOM RS416Pv2 V5.X, RUGGEDCOM RS416v2 V4.X, RUGGEDCOM RS416v2 V5.X, RUGGEDCOM RS8000, RUGGEDCOM RS8000A, RUGGEDCOM RS8000ANC, RUGGEDCOM RS8000H, RUGGEDCOM RS8000HNC, RUGGEDCOM RS8000NC, RUGGEDCOM RS8000T, RUGGEDCOM RS8000TNC, RUGGEDCOM RS900, RUGGEDCOM RS900 (32M) V4.X, RUGGEDCOM RS900 (32M) V5.X, RUGGEDCOM RS900F, RUGGEDCOM RS900G, RUGGEDCOM RS900G (32M) V4.X, RUGGEDCOM RS900G (32M) V5.X, RUGGEDCOM RS900GF, RUGGEDCOM RS900GNC, RUGGEDCOM RS900GNC(32M) V4.X, RUGGEDCOM RS900GNC(32M) V5.X, RUGGEDCOM RS900GP, RUGGEDCOM RS900GPF, RUGGEDCOM RS900GPNC, RUGGEDCOM RS900L, RUGGEDCOM RS900LNC, RUGGEDCOM RS900M-GETS-C01, RUGGEDCOM RS900M-GETS-XX, RUGGEDCOM RS900M-STND-C01, RUGGEDCOM RS900M-STND-XX, RUGGEDCOM RS900MNC-GETS-C01, RUGGEDCOM RS900MNC-GETS-XX, RUGGEDCOM RS900MNC-STND-XX, RUGGEDCOM RS900MNC-STND-XX-C01, RUGGEDCOM RS900NC, RUGGEDCOM RS900NC(32M) V4.X, RUGGEDCOM RS900NC(32M) V5.X, RUGGEDCOM RS900W, RUGGEDCOM RS910, RUGGEDCOM RS910L, RUGGEDCOM RS910LNC, RUGGEDCOM RS910NC, RUGGEDCOM RS910W, RUGGEDCOM RS920L, RUGGEDCOM RS920LNC, RUGGEDCOM RS920W, RUGGEDCOM RS930L, RUGGEDCOM RS930LNC, RUGGEDCOM RS930W, RUGGEDCOM RS940G, RUGGEDCOM RS940GF, RUGGEDCOM RS940GNC, RUGGEDCOM RS969, RUGGEDCOM RS969NC, RUGGEDCOM RSG2100, RUGGEDCOM RSG2100 (32M) V4.X, RUGGEDCOM RSG2100 (32M) V5.X, RUGGEDCOM RSG2100F, RUGGEDCOM RSG2100NC, RUGGEDCOM RSG2100NC(32M) V4.X, RUGGEDCOM RSG2100NC(32M) V5.X, RUGGEDCOM RSG2100P, RUGGEDCOM RSG2100P (32M) V4.X, RUGGEDCOM RSG2100P (32M) V5.X, RUGGEDCOM RSG2100PF, RUGGEDCOM RSG2100PNC, RUGGEDCOM RSG2100PNC (32M) V4.X, RUGGEDCOM RSG2100PNC (32M) V5.X, RUGGEDCOM RSG2200, RUGGEDCOM RSG2200F, RUGGEDCOM RSG2200NC, RUGGEDCOM RSG2288 V4.X, RUGGEDCOM RSG2288 V5.X, RUGGEDCOM RSG2288NC V4.X, RUGGEDCOM RSG2288NC V5.X, RUGGEDCOM RSG2300 V4.X, RUGGEDCOM RSG2300 V5.X, RUGGEDCOM RSG2300F, RUGGEDCOM RSG2300NC V4.X, RUGGEDCOM RSG2300NC V5.X, RUGGEDCOM RSG2300P V4.X, RUGGEDCOM RSG2300P V5.X, RUGGEDCOM RSG2300PF, RUGGEDCOM RSG2300PNC V4.X, RUGGEDCOM RSG2300PNC V5.X, RUGGEDCOM RSG2488 V4.X, RUGGEDCOM RSG2488 V5.X, RUGGEDCOM RSG2488F, RUGGEDCOM RSG2488NC V4.X, RUGGEDCOM RSG2488NC V5.X, RUGGEDCOM RSG907R, RUGGEDCOM RSG908C, RUGGEDCOM RSG909R, RUGGEDCOM RSG910C, RUGGEDCOM RSG920P V4.X, RUGGEDCOM RSG920P V5.X, RUGGEDCOM RSG920PNC V4.X, RUGGEDCOM RSG920PNC V5.X, RUGGEDCOM RSL910, RUGGEDCOM RSL910NC, RUGGEDCOM RST2228, RUGGEDCOM RST2228P, RUGGEDCOM RST916C, RUGGEDCOM RST916P. Within a third-party component, the process to allocate partition size fails to check memory boundaries. Therefore, if a large amount is requested by an attacker, due to an integer-wrap around, it could result in a small size being allocated instead.
PHP 7.x through 7.1.5 allows remote attackers to cause a denial of service (buffer overflow and application crash) or possibly have unspecified other impact via a long string because of an Integer overflow in mysqli_real_escape_string.
In Eclipse Jetty, versions 9.2.x and older, 9.3.x (all configurations), and 9.4.x (non-default configuration with RFC2616 compliance enabled), transfer-encoding chunks are handled poorly. The chunk length parsing was vulnerable to an integer overflow. Thus a large chunk size could be interpreted as a smaller chunk size and content sent as chunk body could be interpreted as a pipelined request. If Jetty was deployed behind an intermediary that imposed some authorization and that intermediary allowed arbitrarily large chunks to be passed on unchanged, then this flaw could be used to bypass the authorization imposed by the intermediary as the fake pipelined request would not be interpreted by the intermediary as a request.
When parsing a file that is submitted to the DPDecoder service as a job, the service will use the combination of decoding parameters that were submitted with the job along with fields that were parsed for the submitted video by the R3D SDK to calculate the size of a heap buffer. Due to an integer overflow with regards to this calculation, this can result in an undersized heap buffer being allocated. When this heap buffer is written to, a heap-based buffer overflow will occur. This can result in code execution under the context of the application.
An exploitable memory corruption vulnerability exists in the Websocket protocol implementation of Cesanta Mongoose 6.8. A specially crafted websocket packet can cause an integer overflow, leading to a heap buffer overflow and resulting in denial of service and potential remote code execution. An attacker needs to send a specially crafted websocket packet over network to trigger this vulnerability.
pgx is a PostgreSQL driver and toolkit for Go. SQL injection can occur if an attacker can cause a single query or bind message to exceed 4 GB in size. An integer overflow in the calculated message size can cause the one large message to be sent as multiple messages under the attacker's control. The problem is resolved in v4.18.2 and v5.5.4. As a workaround, reject user input large enough to cause a single query or bind message to exceed 4 GB in size.
An exploitable arbitrary memory read vulnerability exists in the MQTT packet parsing functionality of Cesanta Mongoose 6.8. A specially crafted MQTT packet can cause an arbitrary out-of-bounds memory read and write potentially resulting in information disclosure, denial of service and remote code execution. An attacker needs to send a specially crafted MQTT packet over the network to trigger this vulnerability.
NGINX before 1.13.6 has a buffer overflow for years that exceed four digits, as demonstrated by a file with a modification date in 1969 that causes an integer overflow (or a false modification date far in the future), when encountered by the autoindex module.
A flaw was found in newlib in versions prior to 4.0.0. Improper overflow validation in the memory allocation functions mEMALIGn, pvALLOc, nano_memalign, nano_valloc, nano_pvalloc could case an integer overflow, leading to an allocation of a small buffer and then to a heap-based buffer overflow.
Buffer-overflow in jsdtoa.c in Artifex MuJS in versions 1.0.1 to 1.1.1. An integer overflow happens when js_strtod() reads in floating point exponent, which leads to a buffer overflow in the pointer *d.
An issue was discovered in klibc before 2.0.9. Multiple possible integer overflows in the cpio command on 32-bit systems may result in a buffer overflow or other security impact.
The kernel in Amazon Web Services FreeRTOS before 10.4.3 has an integer overflow in queue.c for queue creation.
An issue was discovered in klibc before 2.0.9. Additions in the malloc() function may result in an integer overflow and a subsequent heap buffer overflow.