In the Linux kernel before 5.1.6, there is a use-after-free in cpia2_exit() in drivers/media/usb/cpia2/cpia2_v4l.c that will cause denial of service, aka CID-dea37a972655.
In the Linux kernel before 5.3.9, there is a use-after-free bug that can be caused by a malicious USB device in the drivers/nfc/pn533/usb.c driver, aka CID-6af3aa57a098.
In the Linux kernel before 5.3.12, there is a use-after-free bug that can be caused by a malicious USB device in the drivers/input/ff-memless.c driver, aka CID-fa3a5a1880c9.
In the Linux kernel before 5.3.6, there is a use-after-free bug that can be caused by a malicious USB device in the drivers/net/ieee802154/atusb.c driver, aka CID-7fd25e6fc035.
In the Linux kernel before 5.2.10, there is a use-after-free bug that can be caused by a malicious USB device in the drivers/usb/class/cdc-acm.c driver, aka CID-c52873e5a1ef.
In the Linux kernel before 5.3.7, there is a use-after-free bug that can be caused by a malicious USB device in the drivers/usb/misc/adutux.c driver, aka CID-44efc269db79.
An issue was discovered in the Linux kernel before 5.2.3. There is a use-after-free caused by a malicious USB device in the drivers/media/usb/dvb-usb/dvb-usb-init.c driver.
An issue was discovered in the Linux kernel before 5.2.6. There is a use-after-free caused by a malicious USB device in the drivers/media/v4l2-core/v4l2-dev.c driver because drivers/media/radio/radio-raremono.c does not properly allocate memory.
An issue was discovered in the Linux kernel before 5.2.6. There is a use-after-free caused by a malicious USB device in the drivers/media/usb/cpia2/cpia2_usb.c driver.
An issue was discovered in the Linux kernel before 5.2.1. There is a use-after-free caused by a malicious USB device in the drivers/net/wireless/intersil/p54/p54usb.c driver.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability in the kernel mode layer driver, where an invalid display configuration may lead to denial of service.
The treo_attach function in drivers/usb/serial/visor.c in the Linux kernel before 4.5 allows physically proximate attackers to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact by inserting a USB device that lacks a (1) bulk-in or (2) interrupt-in endpoint.
The aiptek_probe function in drivers/input/tablet/aiptek.c in the Linux kernel before 4.4 allows physically proximate attackers to cause a denial of service (NULL pointer dereference and system crash) via a crafted USB device that lacks endpoints.
A denial of service vulnerability was reported in some ThinkPad models that could cause a system to crash when the Enhanced Biometrics setting is enabled in BIOS.
An issue was discovered in the Linux kernel before 5.2.8. There is a NULL pointer dereference caused by a malicious USB device in the sound/usb/helper.c (motu_microbookii) driver.
An issue was discovered in drivers/usb/gadget/composite.c in the Linux kernel before 5.16.10. The USB Gadget subsystem lacks certain validation of interface OS descriptor requests (ones with a large array index and ones associated with NULL function pointer retrieval). Memory corruption might occur.
A flaw was found in the USB Host Controller Driver framework in the Linux kernel. The usb_giveback_urb function has a logic loophole in its implementation. Due to the inappropriate judgment condition of the goto statement, the function cannot return under the input of a specific malformed descriptor file, so it falls into an endless loop, resulting in a denial of service.
An issue was discovered in the USB subsystem in the Linux kernel through 6.4.2. There is an out-of-bounds and crash in read_descriptors in drivers/usb/core/sysfs.c.
Two memory leaks in the rtl_usb_probe() function in drivers/net/wireless/realtek/rtlwifi/usb.c in the Linux kernel through 5.3.11 allow attackers to cause a denial of service (memory consumption), aka CID-3f9361695113.
A memory leak in the af9005_identify_state() function in drivers/media/usb/dvb-usb/af9005.c in the Linux kernel through 5.3.9 allows attackers to cause a denial of service (memory consumption), aka CID-2289adbfa559.
A memory leak in the rtl8xxxu_submit_int_urb() function in drivers/net/wireless/realtek/rtl8xxxu/rtl8xxxu_core.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering usb_submit_urb() failures, aka CID-a2cdd07488e6.
An issue was discovered in OpenSC through 0.19.0 and 0.20.x through 0.20.0-rc3. libopensc/pkcs15-prkey.c has an incorrect free operation in sc_pkcs15_decode_prkdf_entry.
An issue was discovered in the Linux kernel before 5.2.3. There is a NULL pointer dereference caused by a malicious USB device in the drivers/media/usb/zr364xx/zr364xx.c driver.
An issue was discovered in the Linux kernel before 5.1.8. There is a NULL pointer dereference caused by a malicious USB device in the drivers/media/usb/siano/smsusb.c driver.
An issue was discovered in the Linux kernel before 5.0.14. There is a NULL pointer dereference caused by a malicious USB device in the drivers/usb/misc/yurex.c driver.
An issue was discovered in the Linux kernel before 5.1.8. There is a NULL pointer dereference caused by a malicious USB device in the drivers/usb/misc/sisusbvga/sisusb.c driver.
drivers/net/wireless/ath/ath6kl/usb.c in the Linux kernel through 5.2.9 has a NULL pointer dereference via an incomplete address in an endpoint descriptor.
An issue was discovered in the Linux kernel before 5.1.8. There is a NULL pointer dereference caused by a malicious USB device in the sound/usb/line6/driver.c driver.
An issue was discovered in the Linux kernel before 5.1.8. There is a double-free caused by a malicious USB device in the drivers/usb/misc/rio500.c driver.
An issue was discovered in the Linux kernel before 5.1.17. There is a NULL pointer dereference caused by a malicious USB device in the sound/usb/line6/pcm.c driver.
In the Linux kernel, the following vulnerability has been resolved: comedi: ni_usb6501: fix NULL-deref in command paths The driver uses endpoint-sized USB transfer buffers but had no sanity checks on the sizes. This can lead to zero-size-pointer dereferences or overflowed transfer buffers in ni6501_port_command() and ni6501_counter_command() if a (malicious) device has smaller max-packet sizes than expected (or when doing descriptor fuzz testing). Add the missing sanity checks to probe().
In the Linux kernel through 5.15.2, mwifiex_usb_recv in drivers/net/wireless/marvell/mwifiex/usb.c allows an attacker (who can connect a crafted USB device) to cause a denial of service (skb_over_panic).
An incorrect read request flaw was found in the Infrared Transceiver USB driver in the Linux kernel. This issue occurs when a user attaches a malicious USB device. A local user could use this flaw to starve the resources, causing denial of service or potentially crashing the system.
In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: glink: fix off-by-one in connector_status UCSI connector's indices start from 1 up to 3, PMIC_GLINK_MAX_PORTS. Correct the condition in the pmic_glink_ucsi_connector_status() callback, fixing Type-C orientation reporting for the third USB-C connector.
In the Linux kernel, the following vulnerability has been resolved: fs/inode: Prevent dump_mapping() accessing invalid dentry.d_name.name It's observed that a crash occurs during hot-remove a memory device, in which user is accessing the hugetlb. See calltrace as following: ------------[ cut here ]------------ WARNING: CPU: 1 PID: 14045 at arch/x86/mm/fault.c:1278 do_user_addr_fault+0x2a0/0x790 Modules linked in: kmem device_dax cxl_mem cxl_pmem cxl_port cxl_pci dax_hmem dax_pmem nd_pmem cxl_acpi nd_btt cxl_core crc32c_intel nvme virtiofs fuse nvme_core nfit libnvdimm dm_multipath scsi_dh_rdac scsi_dh_emc s mirror dm_region_hash dm_log dm_mod CPU: 1 PID: 14045 Comm: daxctl Not tainted 6.10.0-rc2-lizhijian+ #492 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 RIP: 0010:do_user_addr_fault+0x2a0/0x790 Code: 48 8b 00 a8 04 0f 84 b5 fe ff ff e9 1c ff ff ff 4c 89 e9 4c 89 e2 be 01 00 00 00 bf 02 00 00 00 e8 b5 ef 24 00 e9 42 fe ff ff <0f> 0b 48 83 c4 08 4c 89 ea 48 89 ee 4c 89 e7 5b 5d 41 5c 41 5d 41 RSP: 0000:ffffc90000a575f0 EFLAGS: 00010046 RAX: ffff88800c303600 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000001000 RSI: ffffffff82504162 RDI: ffffffff824b2c36 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: ffffc90000a57658 R13: 0000000000001000 R14: ffff88800bc2e040 R15: 0000000000000000 FS: 00007f51cb57d880(0000) GS:ffff88807fd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000001000 CR3: 00000000072e2004 CR4: 00000000001706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __warn+0x8d/0x190 ? do_user_addr_fault+0x2a0/0x790 ? report_bug+0x1c3/0x1d0 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 ? do_user_addr_fault+0x2a0/0x790 ? exc_page_fault+0x31/0x200 exc_page_fault+0x68/0x200 <...snip...> BUG: unable to handle page fault for address: 0000000000001000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 800000000ad92067 P4D 800000000ad92067 PUD 7677067 PMD 0 Oops: Oops: 0000 [#1] PREEMPT SMP PTI ---[ end trace 0000000000000000 ]--- BUG: unable to handle page fault for address: 0000000000001000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 800000000ad92067 P4D 800000000ad92067 PUD 7677067 PMD 0 Oops: Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 14045 Comm: daxctl Kdump: loaded Tainted: G W 6.10.0-rc2-lizhijian+ #492 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 RIP: 0010:dentry_name+0x1f4/0x440 <...snip...> ? dentry_name+0x2fa/0x440 vsnprintf+0x1f3/0x4f0 vprintk_store+0x23a/0x540 vprintk_emit+0x6d/0x330 _printk+0x58/0x80 dump_mapping+0x10b/0x1a0 ? __pfx_free_object_rcu+0x10/0x10 __dump_page+0x26b/0x3e0 ? vprintk_emit+0xe0/0x330 ? _printk+0x58/0x80 ? dump_page+0x17/0x50 dump_page+0x17/0x50 do_migrate_range+0x2f7/0x7f0 ? do_migrate_range+0x42/0x7f0 ? offline_pages+0x2f4/0x8c0 offline_pages+0x60a/0x8c0 memory_subsys_offline+0x9f/0x1c0 ? lockdep_hardirqs_on+0x77/0x100 ? _raw_spin_unlock_irqrestore+0x38/0x60 device_offline+0xe3/0x110 state_store+0x6e/0xc0 kernfs_fop_write_iter+0x143/0x200 vfs_write+0x39f/0x560 ksys_write+0x65/0xf0 do_syscall_64+0x62/0x130 Previously, some sanity check have been done in dump_mapping() before the print facility parsing '%pd' though, it's still possible to run into an invalid dentry.d_name.name. Since dump_mapping() only needs to dump the filename only, retrieve it by itself in a safer way to prevent an unnecessary crash. Note that either retrieving the filename with '%pd' or strncpy_from_kernel_nofault(), the filename could be unreliable.
A use after free flaw was found in hfsplus_put_super in fs/hfsplus/super.c in the Linux Kernel. This flaw could allow a local user to cause a denial of service problem.
kernel/ucount.c in the Linux kernel 5.14 through 5.16.4, when unprivileged user namespaces are enabled, allows a use-after-free and privilege escalation because a ucounts object can outlive its namespace.
In the Linux kernel, the following vulnerability has been resolved: btrfs: zoned: fix use-after-free due to race with dev replace While loading a zone's info during creation of a block group, we can race with a device replace operation and then trigger a use-after-free on the device that was just replaced (source device of the replace operation). This happens because at btrfs_load_zone_info() we extract a device from the chunk map into a local variable and then use the device while not under the protection of the device replace rwsem. So if there's a device replace operation happening when we extract the device and that device is the source of the replace operation, we will trigger a use-after-free if before we finish using the device the replace operation finishes and frees the device. Fix this by enlarging the critical section under the protection of the device replace rwsem so that all uses of the device are done inside the critical section.
In the Linux kernel, the following vulnerability has been resolved: greybus: Fix use-after-free bug in gb_interface_release due to race condition. In gb_interface_create, &intf->mode_switch_completion is bound with gb_interface_mode_switch_work. Then it will be started by gb_interface_request_mode_switch. Here is the relevant code. if (!queue_work(system_long_wq, &intf->mode_switch_work)) { ... } If we call gb_interface_release to make cleanup, there may be an unfinished work. This function will call kfree to free the object "intf". However, if gb_interface_mode_switch_work is scheduled to run after kfree, it may cause use-after-free error as gb_interface_mode_switch_work will use the object "intf". The possible execution flow that may lead to the issue is as follows: CPU0 CPU1 | gb_interface_create | gb_interface_request_mode_switch gb_interface_release | kfree(intf) (free) | | gb_interface_mode_switch_work | mutex_lock(&intf->mutex) (use) Fix it by canceling the work before kfree.
A use-after-free issue was found in the way the Linux kernel's KVM hypervisor processed posted interrupts when nested(=1) virtualization is enabled. In nested_get_vmcs12_pages(), in case of an error while processing posted interrupt address, it unmaps the 'pi_desc_page' without resetting 'pi_desc' descriptor address, which is later used in pi_test_and_clear_on(). A guest user/process could use this flaw to crash the host kernel resulting in DoS or potentially gain privileged access to a system. Kernel versions before 4.14.91 and before 4.19.13 are vulnerable.
In the Linux kernel, the following vulnerability has been resolved: cachefiles: fix slab-use-after-free in cachefiles_ondemand_daemon_read() We got the following issue in a fuzz test of randomly issuing the restore command: ================================================================== BUG: KASAN: slab-use-after-free in cachefiles_ondemand_daemon_read+0xb41/0xb60 Read of size 8 at addr ffff888122e84088 by task ondemand-04-dae/963 CPU: 13 PID: 963 Comm: ondemand-04-dae Not tainted 6.8.0-dirty #564 Call Trace: kasan_report+0x93/0xc0 cachefiles_ondemand_daemon_read+0xb41/0xb60 vfs_read+0x169/0xb50 ksys_read+0xf5/0x1e0 Allocated by task 116: kmem_cache_alloc+0x140/0x3a0 cachefiles_lookup_cookie+0x140/0xcd0 fscache_cookie_state_machine+0x43c/0x1230 [...] Freed by task 792: kmem_cache_free+0xfe/0x390 cachefiles_put_object+0x241/0x480 fscache_cookie_state_machine+0x5c8/0x1230 [...] ================================================================== Following is the process that triggers the issue: mount | daemon_thread1 | daemon_thread2 ------------------------------------------------------------ cachefiles_withdraw_cookie cachefiles_ondemand_clean_object(object) cachefiles_ondemand_send_req REQ_A = kzalloc(sizeof(*req) + data_len) wait_for_completion(&REQ_A->done) cachefiles_daemon_read cachefiles_ondemand_daemon_read REQ_A = cachefiles_ondemand_select_req msg->object_id = req->object->ondemand->ondemand_id ------ restore ------ cachefiles_ondemand_restore xas_for_each(&xas, req, ULONG_MAX) xas_set_mark(&xas, CACHEFILES_REQ_NEW) cachefiles_daemon_read cachefiles_ondemand_daemon_read REQ_A = cachefiles_ondemand_select_req copy_to_user(_buffer, msg, n) xa_erase(&cache->reqs, id) complete(&REQ_A->done) ------ close(fd) ------ cachefiles_ondemand_fd_release cachefiles_put_object cachefiles_put_object kmem_cache_free(cachefiles_object_jar, object) REQ_A->object->ondemand->ondemand_id // object UAF !!! When we see the request within xa_lock, req->object must not have been freed yet, so grab the reference count of object before xa_unlock to avoid the above issue.
In the Linux kernel, the following vulnerability has been resolved: 9p: add missing locking around taking dentry fid list Fix a use-after-free on dentry's d_fsdata fid list when a thread looks up a fid through dentry while another thread unlinks it: UAF thread: refcount_t: addition on 0; use-after-free. p9_fid_get linux/./include/net/9p/client.h:262 v9fs_fid_find+0x236/0x280 linux/fs/9p/fid.c:129 v9fs_fid_lookup_with_uid linux/fs/9p/fid.c:181 v9fs_fid_lookup+0xbf/0xc20 linux/fs/9p/fid.c:314 v9fs_vfs_getattr_dotl+0xf9/0x360 linux/fs/9p/vfs_inode_dotl.c:400 vfs_statx+0xdd/0x4d0 linux/fs/stat.c:248 Freed by: p9_fid_destroy (inlined) p9_client_clunk+0xb0/0xe0 linux/net/9p/client.c:1456 p9_fid_put linux/./include/net/9p/client.h:278 v9fs_dentry_release+0xb5/0x140 linux/fs/9p/vfs_dentry.c:55 v9fs_remove+0x38f/0x620 linux/fs/9p/vfs_inode.c:518 vfs_unlink+0x29a/0x810 linux/fs/namei.c:4335 The problem is that d_fsdata was not accessed under d_lock, because d_release() normally is only called once the dentry is otherwise no longer accessible but since we also call it explicitly in v9fs_remove that lock is required: move the hlist out of the dentry under lock then unref its fids once they are no longer accessible.
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Discard command completions in internal error Fix use after free when FW completion arrives while device is in internal error state. Avoid calling completion handler in this case, since the device will flush the command interface and trigger all completions manually. Kernel log: ------------[ cut here ]------------ refcount_t: underflow; use-after-free. ... RIP: 0010:refcount_warn_saturate+0xd8/0xe0 ... Call Trace: <IRQ> ? __warn+0x79/0x120 ? refcount_warn_saturate+0xd8/0xe0 ? report_bug+0x17c/0x190 ? handle_bug+0x3c/0x60 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 ? refcount_warn_saturate+0xd8/0xe0 cmd_ent_put+0x13b/0x160 [mlx5_core] mlx5_cmd_comp_handler+0x5f9/0x670 [mlx5_core] cmd_comp_notifier+0x1f/0x30 [mlx5_core] notifier_call_chain+0x35/0xb0 atomic_notifier_call_chain+0x16/0x20 mlx5_eq_async_int+0xf6/0x290 [mlx5_core] notifier_call_chain+0x35/0xb0 atomic_notifier_call_chain+0x16/0x20 irq_int_handler+0x19/0x30 [mlx5_core] __handle_irq_event_percpu+0x4b/0x160 handle_irq_event+0x2e/0x80 handle_edge_irq+0x98/0x230 __common_interrupt+0x3b/0xa0 common_interrupt+0x7b/0xa0 </IRQ> <TASK> asm_common_interrupt+0x22/0x40
In the Linux kernel, the following vulnerability has been resolved: genirq/irqdesc: Prevent use-after-free in irq_find_at_or_after() irq_find_at_or_after() dereferences the interrupt descriptor which is returned by mt_find() while neither holding sparse_irq_lock nor RCU read lock, which means the descriptor can be freed between mt_find() and the dereference: CPU0 CPU1 desc = mt_find() delayed_free_desc(desc) irq_desc_get_irq(desc) The use-after-free is reported by KASAN: Call trace: irq_get_next_irq+0x58/0x84 show_stat+0x638/0x824 seq_read_iter+0x158/0x4ec proc_reg_read_iter+0x94/0x12c vfs_read+0x1e0/0x2c8 Freed by task 4471: slab_free_freelist_hook+0x174/0x1e0 __kmem_cache_free+0xa4/0x1dc kfree+0x64/0x128 irq_kobj_release+0x28/0x3c kobject_put+0xcc/0x1e0 delayed_free_desc+0x14/0x2c rcu_do_batch+0x214/0x720 Guard the access with a RCU read lock section.
In the Linux kernel, the following vulnerability has been resolved: kunit: Fix kthread reference There is a race condition when a kthread finishes after the deadline and before the call to kthread_stop(), which may lead to use after free.
In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix UAF for cq async event The refcount of CQ is not protected by locks. When CQ asynchronous events and CQ destruction are concurrent, CQ may have been released, which will cause UAF. Use the xa_lock() to protect the CQ refcount.
In the Linux kernel, the following vulnerability has been resolved: net: fix __dst_negative_advice() race __dst_negative_advice() does not enforce proper RCU rules when sk->dst_cache must be cleared, leading to possible UAF. RCU rules are that we must first clear sk->sk_dst_cache, then call dst_release(old_dst). Note that sk_dst_reset(sk) is implementing this protocol correctly, while __dst_negative_advice() uses the wrong order. Given that ip6_negative_advice() has special logic against RTF_CACHE, this means each of the three ->negative_advice() existing methods must perform the sk_dst_reset() themselves. Note the check against NULL dst is centralized in __dst_negative_advice(), there is no need to duplicate it in various callbacks. Many thanks to Clement Lecigne for tracking this issue. This old bug became visible after the blamed commit, using UDP sockets.
In the Linux kernel, the following vulnerability has been resolved: RDMA/iwcm: Fix a use-after-free related to destroying CM IDs iw_conn_req_handler() associates a new struct rdma_id_private (conn_id) with an existing struct iw_cm_id (cm_id) as follows: conn_id->cm_id.iw = cm_id; cm_id->context = conn_id; cm_id->cm_handler = cma_iw_handler; rdma_destroy_id() frees both the cm_id and the struct rdma_id_private. Make sure that cm_work_handler() does not trigger a use-after-free by only freeing of the struct rdma_id_private after all pending work has finished.
Use-after-free vulnerability in mm/mprotect.c in the Linux kernel before 2.6.37-rc2 allows local users to cause a denial of service via vectors involving an mprotect system call.
In the Linux kernel, the following vulnerability has been resolved: gpiolib: cdev: Fix use after free in lineinfo_changed_notify The use-after-free issue occurs as follows: when the GPIO chip device file is being closed by invoking gpio_chrdev_release(), watched_lines is freed by bitmap_free(), but the unregistration of lineinfo_changed_nb notifier chain failed due to waiting write rwsem. Additionally, one of the GPIO chip's lines is also in the release process and holds the notifier chain's read rwsem. Consequently, a race condition leads to the use-after-free of watched_lines. Here is the typical stack when issue happened: [free] gpio_chrdev_release() --> bitmap_free(cdev->watched_lines) <-- freed --> blocking_notifier_chain_unregister() --> down_write(&nh->rwsem) <-- waiting rwsem --> __down_write_common() --> rwsem_down_write_slowpath() --> schedule_preempt_disabled() --> schedule() [use] st54spi_gpio_dev_release() --> gpio_free() --> gpiod_free() --> gpiod_free_commit() --> gpiod_line_state_notify() --> blocking_notifier_call_chain() --> down_read(&nh->rwsem); <-- held rwsem --> notifier_call_chain() --> lineinfo_changed_notify() --> test_bit(xxxx, cdev->watched_lines) <-- use after free The side effect of the use-after-free issue is that a GPIO line event is being generated for userspace where it shouldn't. However, since the chrdev is being closed, userspace won't have the chance to read that event anyway. To fix the issue, call the bitmap_free() function after the unregistration of lineinfo_changed_nb notifier chain.