Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Concurrency). Supported versions that are affected are Java SE: 7u171, 8u162 and 10; Java SE Embedded: 8u161; JRockit: R28.3.17. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Libraries). Supported versions that are affected are Java SE: 6u171, 7u161, 8u152 and 9.0.1; Java SE Embedded: 8u151; JRockit: R28.3.16. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: JMX). Supported versions that are affected are Java SE: 6u181, 7u171, 8u162 and 10; Java SE Embedded: 8u161; JRockit: R28.3.17. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
FreeRDP is a free implementation of the Remote Desktop Protocol (RDP), released under the Apache license. Affected versions are subject to an Integer-Underflow leading to Out-Of-Bound Read in the `zgfx_decompress_segment` function. In the context of `CopyMemory`, it's possible to read data beyond the transmitted packet range and likely cause a crash. This issue has been addressed in versions 2.11.0 and 3.0.0-beta3. Users are advised to upgrade. There are no known workarounds for this issue.
In some circumstances, a stale value could have been used for a global variable in WASM JIT analysis. This resulted in incorrect compilation and a potentially exploitable crash in the content process. This vulnerability affects Firefox < 116, Firefox ESR < 102.14, and Firefox ESR < 115.1.
In Apache HTTP server versions 2.4.37 and prior, by sending request bodies in a slow loris way to plain resources, the h2 stream for that request unnecessarily occupied a server thread cleaning up that incoming data. This affects only HTTP/2 (mod_http2) connections.
options.c in atftp before 0.7.5 reads past the end of an array, and consequently discloses server-side /etc/group data to a remote client.
FreeRDP is a free implementation of the Remote Desktop Protocol (RDP), released under the Apache license. Affected versions of FreeRDP are subject to a Null Pointer Dereference leading a crash in the RemoteFX (rfx) handling. Inside the `rfx_process_message_tileset` function, the program allocates tiles using `rfx_allocate_tiles` for the number of numTiles. If the initialization process of tiles is not completed for various reasons, tiles will have a NULL pointer. Which may be accessed in further processing and would cause a program crash. This issue has been addressed in versions 2.11.0 and 3.0.0-beta3. Users are advised to upgrade. There are no known workarounds for this vulnerability.
In AWStats through 7.8, cgi-bin/awstats.pl?config= accepts a partial absolute pathname (omitting the initial /etc), even though it was intended to only read a file in the /etc/awstats/awstats.conf format. NOTE: this issue exists because of an incomplete fix for CVE-2017-1000501 and CVE-2020-29600.
Squid through 4.14 and 5.x through 5.0.5, in some configurations, allows information disclosure because of an out-of-bounds read in WCCP protocol data. This can be leveraged as part of a chain for remote code execution as nobody.
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: JAX-WS). Supported versions that are affected are Java SE: 7u151, 8u144 and 9; Java SE Embedded: 8u144. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
In BIND 9.3.0 -> 9.11.35, 9.12.0 -> 9.16.21, and versions 9.9.3-S1 -> 9.11.35-S1 and 9.16.8-S1 -> 9.16.21-S1 of BIND Supported Preview Edition, as well as release versions 9.17.0 -> 9.17.18 of the BIND 9.17 development branch, exploitation of broken authoritative servers using a flaw in response processing can cause degradation in BIND resolver performance. The way the lame cache is currently designed makes it possible for its internal data structures to grow almost infinitely, which may cause significant delays in client query processing.
A path disclosure vulnerability was found in Samba. As part of the Spotlight protocol, Samba discloses the server-side absolute path of shares, files, and directories in the results for search queries. This flaw allows a malicious client or an attacker with a targeted RPC request to view the information that is part of the disclosed path.
In Eclipse Jetty 9.4.6.v20170531 to 9.4.36.v20210114 (inclusive), 10.0.0, and 11.0.0 when Jetty handles a request containing multiple Accept headers with a large number of “quality” (i.e. q) parameters, the server may enter a denial of service (DoS) state due to high CPU usage processing those quality values, resulting in minutes of CPU time exhausted processing those quality values.
Memory leak in Kafka protocol dissector in Wireshark 3.4.0 and 3.2.0 to 3.2.8 allows denial of service via packet injection or crafted capture file.
FreedomBox through 20.13 allows remote attackers to obtain sensitive information from the /server-status page of the Apache HTTP Server, because a connection from the Tor onion service (or from PageKite) is considered a local connection. This affects both the freedombox and plinth packages of some Linux distributions, but only if the Apache mod_status module is enabled.
In Apache HTTP Server 2.4.0 to 2.4.41, mod_proxy_ftp may use uninitialized memory when proxying to a malicious FTP server.
A flaw was found in Python, specifically in the FTP (File Transfer Protocol) client library in PASV (passive) mode. The issue is how the FTP client trusts the host from the PASV response by default. This flaw allows an attacker to set up a malicious FTP server that can trick FTP clients into connecting back to a given IP address and port. This vulnerability could lead to FTP client scanning ports, which otherwise would not have been possible.
An issue was discovered in Qt through 5.12.9, and 5.13.x through 5.15.x before 5.15.1. read_xbm_body in gui/image/qxbmhandler.cpp has a buffer over-read.
There is a deserialization of untrusted data vulnerability in the Kredis JSON deserialization code
Jetty is a java based web server and servlet engine. Nonstandard cookie parsing in Jetty may allow an attacker to smuggle cookies within other cookies, or otherwise perform unintended behavior by tampering with the cookie parsing mechanism. If Jetty sees a cookie VALUE that starts with `"` (double quote), it will continue to read the cookie string until it sees a closing quote -- even if a semicolon is encountered. So, a cookie header such as: `DISPLAY_LANGUAGE="b; JSESSIONID=1337; c=d"` will be parsed as one cookie, with the name DISPLAY_LANGUAGE and a value of b; JSESSIONID=1337; c=d instead of 3 separate cookies. This has security implications because if, say, JSESSIONID is an HttpOnly cookie, and the DISPLAY_LANGUAGE cookie value is rendered on the page, an attacker can smuggle the JSESSIONID cookie into the DISPLAY_LANGUAGE cookie and thereby exfiltrate it. This is significant when an intermediary is enacting some policy based on cookies, so a smuggled cookie can bypass that policy yet still be seen by the Jetty server or its logging system. This issue has been addressed in versions 9.4.51, 10.0.14, 11.0.14, and 12.0.0.beta0 and users are advised to upgrade. There are no known workarounds for this issue.
Vulnerability in the Java SE product of Oracle Java SE (component: Libraries). Supported versions that are affected are Java SE: 11.0.8 and 15. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Java SE accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.1 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N).
Vulnerability in the Java SE, JRockit component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, JRockit. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Networking). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144; JRockit: R28.3.15. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144; JRockit: R28.3.15. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 7u343, 8u333, 11.0.15.1, 17.0.3.1, 18.0.1.1; Oracle GraalVM Enterprise Edition: 20.3.6, 21.3.2 and 22.1.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Oracle Java SE, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N).
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: JAXP). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: 2D). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE product of Oracle Java SE (component: ImageIO). Supported versions that are affected are Java SE: 11.0.7 and 14.0.1. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Spring Security versions 4.2.x prior to 4.2.12, 5.0.x prior to 5.0.12, and 5.1.x prior to 5.1.5 contain an insecure randomness vulnerability when using SecureRandomFactoryBean#setSeed to configure a SecureRandom instance. In order to be impacted, an honest application must provide a seed and make the resulting random material available to an attacker for inspection.
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Utilities). Supported versions that are affected are Java SE: 7u221, 8u212, 11.0.3 and 12.0.1; Java SE Embedded: 8u211. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Utilities). Supported versions that are affected are Java SE: 7u221, 8u212, 11.0.3 and 12.0.1; Java SE Embedded: 8u211. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
In the Linux kernel, the following vulnerability has been resolved: block/rnbd-srv: Check for unlikely string overflow Since "dev_search_path" can technically be as large as PATH_MAX, there was a risk of truncation when copying it and a second string into "full_path" since it was also PATH_MAX sized. The W=1 builds were reporting this warning: drivers/block/rnbd/rnbd-srv.c: In function 'process_msg_open.isra': drivers/block/rnbd/rnbd-srv.c:616:51: warning: '%s' directive output may be truncated writing up to 254 bytes into a region of size between 0 and 4095 [-Wformat-truncation=] 616 | snprintf(full_path, PATH_MAX, "%s/%s", | ^~ In function 'rnbd_srv_get_full_path', inlined from 'process_msg_open.isra' at drivers/block/rnbd/rnbd-srv.c:721:14: drivers/block/rnbd/rnbd-srv.c:616:17: note: 'snprintf' output between 2 and 4351 bytes into a destination of size 4096 616 | snprintf(full_path, PATH_MAX, "%s/%s", | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 617 | dev_search_path, dev_name); | ~~~~~~~~~~~~~~~~~~~~~~~~~~ To fix this, unconditionally check for truncation (as was already done for the case where "%SESSNAME%" was present).
Redmine before 4.1.5 and 4.2.x before 4.2.3 may disclose the names of users on activity views due to an insufficient access filter.
An issue was discovered in the rack-cors (aka Rack CORS Middleware) gem before 1.0.4 for Ruby. It allows ../ directory traversal to access private resources because resource matching does not ensure that pathnames are in a canonical format.
The flow_dissector feature in the Linux kernel 4.3 through 5.x before 5.3.10 has a device tracking vulnerability, aka CID-55667441c84f. This occurs because the auto flowlabel of a UDP IPv6 packet relies on a 32-bit hashrnd value as a secret, and because jhash (instead of siphash) is used. The hashrnd value remains the same starting from boot time, and can be inferred by an attacker. This affects net/core/flow_dissector.c and related code.
In WordPress before 5.2.4, unauthenticated viewing of certain content is possible because the static query property is mishandled.
A vulnerability was found in Linux Kernel. It has been declared as problematic. Affected by this vulnerability is the function intr_callback of the file drivers/net/usb/r8152.c of the component BPF. The manipulation leads to logging of excessive data. The attack can be launched remotely. It is recommended to apply a patch to fix this issue. The associated identifier of this vulnerability is VDB-211363.
In Puma before versions 3.12.2 and 4.3.1, a poorly-behaved client could use keepalive requests to monopolize Puma's reactor and create a denial of service attack. If more keepalive connections to Puma are opened than there are threads available, additional connections will wait permanently if the attacker sends requests frequently enough. This vulnerability is patched in Puma 4.3.1 and 3.12.2.
In MediaWiki through 1.33.0, Special:Redirect allows information disclosure of suppressed usernames via a User ID Lookup.
Zabbix through 4.4.0alpha1 allows User Enumeration. With login requests, it is possible to enumerate application usernames based on the variability of server responses (e.g., the "Login name or password is incorrect" and "No permissions for system access" messages, or just blocking for a number of seconds). This affects both api_jsonrpc.php and index.php.
There is an overflow bug in the x64_64 Montgomery squaring procedure used in exponentiation with 512-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against 2-prime RSA1024, 3-prime RSA1536, and DSA1024 as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH512 are considered just feasible. However, for an attack the target would have to re-use the DH512 private key, which is not recommended anyway. Also applications directly using the low level API BN_mod_exp may be affected if they use BN_FLG_CONSTTIME. Fixed in OpenSSL 1.1.1e (Affected 1.1.1-1.1.1d). Fixed in OpenSSL 1.0.2u (Affected 1.0.2-1.0.2t).
In numbers.c in libxslt 1.1.33, an xsl:number with certain format strings could lead to a uninitialized read in xsltNumberFormatInsertNumbers. This could allow an attacker to discern whether a byte on the stack contains the characters A, a, I, i, or 0, or any other character.
sf-pcapng.c in libpcap before 1.9.1 does not properly validate the PHB header length before allocating memory.
A null pointer dereference issue was discovered in 'FFmpeg' in decode_main_header() function of libavformat/nutdec.c file. The flaw occurs because the function lacks check of the return value of avformat_new_stream() and triggers the null pointer dereference error, causing an application to crash.
An issue was discovered in Open Ticket Request System (OTRS) 7.0.x through 7.0.8, Community Edition 6.0.x through 6.0.19, and Community Edition 5.0.x through 5.0.36. In the customer or external frontend, personal information of agents (e.g., Name and mail address) can be disclosed in external notes.
cifs-utils through 6.14, with verbose logging, can cause an information leak when a file contains = (equal sign) characters but is not a valid credentials file.