In Eclipse Parsson before versions 1.1.4 and 1.0.5, Parsing JSON from untrusted sources can lead malicious actors to exploit the fact that the built-in support for parsing numbers with large scale in Java has a number of edge cases where the input text of a number can lead to much larger processing time than one would expect. To mitigate the risk, parsson put in place a size limit for the numbers as well as their scale.
In Eclipse Jetty versions 12.0.0 to 12.0.16 included, an HTTP/2 client can specify a very large value for the HTTP/2 settings parameter SETTINGS_MAX_HEADER_LIST_SIZE. The Jetty HTTP/2 server does not perform validation on this setting, and tries to allocate a ByteBuffer of the specified capacity to encode HTTP responses, likely resulting in OutOfMemoryError being thrown, or even the JVM process exiting.
In Eclipse Jetty version 9.3.x and 9.4.x, the server is vulnerable to Denial of Service conditions if a remote client sends either large SETTINGs frames container containing many settings, or many small SETTINGs frames. The vulnerability is due to the additional CPU and memory allocations required to handle changed settings.
In NetX HTTP server functionality of Eclipse ThreadX NetX Duo before version 6.4.2, an attacker can cause an integer underflow and a subsequent denial of service by writing a very large file, by specially crafted packets with Content-Length smaller than the data request size. A possible workaround is to disable HTTP PUT support.
In NetX HTTP server functionality of Eclipse ThreadX NetX Duo before version 6.4.2, an attacker can cause an integer underflow and a subsequent denial of service by writing a very large file, by specially crafted packets with Content-Length in one packet smaller than the data request size of the other packet. A possible workaround is to disable HTTP PUT support.
In NetX HTTP server functionality of Eclipse ThreadX NetX Duo before version 6.4.2, an attacker can cause a denial of service by specially crafted packets. The core issue is missing closing of a file in case of an error condition, resulting in the 404 error for each further file request. Users can work-around the issue by disabling the PUT request support.
There exists a security vulnerability in Jetty's DosFilter which can be exploited by unauthorized users to cause remote denial-of-service (DoS) attack on the server using DosFilter. By repeatedly sending crafted requests, attackers can trigger OutofMemory errors and exhaust the server's memory finally.
In Eclipse Vert.x version 4.3.0 to 4.5.9, the gRPC server does not limit the maximum length of message payload (Maven GAV: io.vertx:vertx-grpc-server and io.vertx:vertx-grpc-client). This is fixed in the 4.5.10 version. Note this does not affect the Vert.x gRPC server based grpc-java and Netty libraries (Maven GAV: io.vertx:vertx-grpc)
In Eclipse Californium version 2.3.0 to 2.6.0, the certificate based (x509 and RPK) DTLS handshakes accidentally fails, because the DTLS server side sticks to a wrong internal state. That wrong internal state is set by a previous certificate based DTLS handshake failure with TLS parameter mismatch. The DTLS server side must be restarted to recover this. This allow clients to force a DoS.
In Eclipse Mosquitto up to version 2.0.18a, an attacker can achieve memory leaking, segmentation fault or heap-use-after-free by sending specific sequences of "CONNECT", "DISCONNECT", "SUBSCRIBE", "UNSUBSCRIBE" and "PUBLISH" packets.
In Eclipse Hono version 1.3.0 and 1.4.0 the AMQP protocol adapter does not verify the size of AMQP messages received from devices. In particular, a device may send messages that are bigger than the max-message-size that the protocol adapter has indicated during link establishment. While the AMQP 1.0 protocol explicitly disallows a peer to send such messages, a hand crafted AMQP 1.0 client could exploit this behavior in order to send a message of unlimited size to the adapter, eventually causing the adapter to fail with an out of memory exception.
In Eclipse Wakaama, ever since its inception until 2021-01-14, the CoAP parsing code does not properly sanitize network-received data.
In versions 1.6 to 2.0.11 of Eclipse Mosquitto, an MQTT v5 client connecting with a large number of user-property properties could cause excessive CPU usage, leading to a loss of performance and possible denial of service.
In Eclipse Mosquitto version from 1.0 to 1.4.15, a Null Dereference vulnerability was found in the Mosquitto library which could lead to crashes for those applications using the library.
In Eclipse Mosquitto versions 2.07 and earlier, the server will crash if the client tries to send a PUBLISH packet with topic length = 0.
The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023.
In Eclipse Jetty 7.2.2 to 9.4.38, 10.0.0.alpha0 to 10.0.1, and 11.0.0.alpha0 to 11.0.1, CPU usage can reach 100% upon receiving a large invalid TLS frame.
A stack buffer overflow in /ddsi/q_bitset.h of Eclipse IOT Cyclone DDS Project v0.1.0 causes the DDS subscriber server to crash.
Jetty is a Java based web server and servlet engine. An HTTP/2 SSL connection that is established and TCP congested will be leaked when it times out. An attacker can cause many connections to end up in this state, and the server may run out of file descriptors, eventually causing the server to stop accepting new connections from valid clients. The vulnerability is patched in 9.4.54, 10.0.20, 11.0.20, and 12.0.6.
In Mosquitto before 2.0.16, a memory leak occurs when clients send v5 CONNECT packets with a will message that contains invalid property types.
Eclipse Jetty provides a web server and servlet container. In versions 11.0.0 through 11.0.15, 10.0.0 through 10.0.15, and 9.0.0 through 9.4.52, an integer overflow in `MetaDataBuilder.checkSize` allows for HTTP/2 HPACK header values to exceed their size limit. `MetaDataBuilder.java` determines if a header name or value exceeds the size limit, and throws an exception if the limit is exceeded. However, when length is very large and huffman is true, the multiplication by 4 in line 295 will overflow, and length will become negative. `(_size+length)` will now be negative, and the check on line 296 will not be triggered. Furthermore, `MetaDataBuilder.checkSize` allows for user-entered HPACK header value sizes to be negative, potentially leading to a very large buffer allocation later on when the user-entered size is multiplied by 2. This means that if a user provides a negative length value (or, more precisely, a length value which, when multiplied by the 4/3 fudge factor, is negative), and this length value is a very large positive number when multiplied by 2, then the user can cause a very large buffer to be allocated on the server. Users of HTTP/2 can be impacted by a remote denial of service attack. The issue has been fixed in versions 11.0.16, 10.0.16, and 9.4.53. There are no known workarounds.
In Eclipse Parsson before 1.0.4 and 1.1.3, a document with a large depth of nested objects can allow an attacker to cause a Java stack overflow exception and denial of service. Eclipse Parsson allows processing (e.g. parse, generate, transform and query) JSON documents.
In NextX Duo before 6.4.4, in the HTTP client module, the network support code for Eclipse Foundation ThreadX, the parsing of HTTP header fields was missing bounds verification. A crafted server response could cause undefined behavior.
In NextX Duo's snmp addon versions before 6.4.4, a part of the Eclipse Foundation ThreadX, an attacker could cause an out-of-bound read by a crafted SNMPv3 security parameters.
In Eclipse Jetty, versions <=9.4.57, <=10.0.25, <=11.0.25, <=12.0.21, <=12.1.0.alpha2, an HTTP/2 client may trigger the server to send RST_STREAM frames, for example by sending frames that are malformed or that should not be sent in a particular stream state, therefore forcing the server to consume resources such as CPU and memory. For example, a client can open a stream and then send WINDOW_UPDATE frames with window size increment of 0, which is illegal. Per specification https://www.rfc-editor.org/rfc/rfc9113.html#name-window_update , the server should send a RST_STREAM frame. The client can now open another stream and send another bad WINDOW_UPDATE, therefore causing the server to consume more resources than necessary, as this case does not exceed the max number of concurrent streams, yet the client is able to create an enormous amount of streams in a short period of time. The attack can be performed with other conditions (for example, a DATA frame for a closed stream) that cause the server to send a RST_STREAM frame. Links: * https://github.com/jetty/jetty.project/security/advisories/GHSA-mmxm-8w33-wc4h
The broker in Eclipse Mosquitto 1.3.2 through 2.x before 2.0.16 has a memory leak that can be abused remotely when a client sends many QoS 2 messages with duplicate message IDs, and fails to respond to PUBREC commands. This occurs because of mishandling of EAGAIN from the libc send function.
In Eclipse OpenJ9 prior to the 0.14.0 release, the Java bytecode verifier incorrectly allows a method to execute past the end of bytecode array causing crashes. Eclipse OpenJ9 v0.14.0 correctly detects this case and rejects the attempted class load.
In NetX Duo component HTTP server functionality of Eclipse ThreadX NetX Duo before version 6.4.3, an attacker can cause an integer underflow and a subsequent denial of service by writing a very large file, by specially crafted packets with Content-Length smaller than the data request size. A possible workaround is to disable HTTP PUT support. This issue follows an uncomplete fix in CVE-2025-0728.
In NetX HTTP server functionality of Eclipse ThreadX NetX Duo before version 6.4.3, an attacker can cause a denial of service by specially crafted packets. The core issue is missing closing of a file in case of an error condition, resulting in the 404 error for each further file request. Users can work-around the issue by disabling the PUT request support. This issue follows an incomplete fix of CVE-2025-0726.
In NetX HTTP server functionality of Eclipse ThreadX NetX Duo before version 6.4.3, an attacker can cause an integer underflow and a subsequent denial of service by writing a very large file, by specially crafted packets with Content-Length in one packet smaller than the data request size of the other packet. A possible workaround is to disable HTTP PUT support. This issue follows an incomplete fix of CVE-2025-0727
In Eclipse Californium version 2.0.0 to 2.7.2 and 3.0.0-3.5.0 a DTLS resumption handshake falls back to a DTLS full handshake on a parameter mismatch without using a HelloVerifyRequest. Especially, if used with certificate based cipher suites, that results in message amplification (DDoS other peers) and high CPU load (DoS own peer). The misbehavior occurs only with DTLS_VERIFY_PEERS_ON_RESUMPTION_THRESHOLD values larger than 0.
The package org.eclipse.milo:sdk-server before 0.6.8 are vulnerable to Denial of Service (DoS) when bypassing the limitations for excessive memory consumption by sending multiple CloseSession requests with the deleteSubscription parameter equal to False.
In Eclipse Jetty versions 10.0.0 thru 10.0.9, and 11.0.0 thru 11.0.9 versions, SslConnection does not release ByteBuffers from configured ByteBufferPool in case of error code paths.
In Eclipse Jetty HTTP/2 server implementation, when encountering an invalid HTTP/2 request, the error handling has a bug that can wind up not properly cleaning up the active connections and associated resources. This can lead to a Denial of Service scenario where there are no enough resources left to process good requests.
A heap buffer overflow in /src/dds_stream.c of Eclipse IOT Cyclone DDS Project v0.1.0 causes the DDS subscriber server to crash.
Tornado is a Python web framework and asynchronous networking library. Versions 6.5.2 and below use an inefficient algorithm when parsing parameters for HTTP header values, potentially causing a DoS. The _parseparam function in httputil.py is used to parse specific HTTP header values, such as those in multipart/form-data and repeatedly calls string.count() within a nested loop while processing quoted semicolons. If an attacker sends a request with a large number of maliciously crafted parameters in a Content-Disposition header, the server's CPU usage increases quadratically (O(n²)) during parsing. Due to Tornado's single event loop architecture, a single malicious request can cause the entire server to become unresponsive for an extended period. This issue is fixed in version 6.5.3.
Large loop in the Kafka dissector in Wireshark 3.6.0 allows denial of service via packet injection or crafted capture file
A vulnerability was found in Radare2 in versions prior to 5.6.2, 5.6.0, 5.5.4 and 5.5.2. Mapping a huge section filled with zeros of an ELF64 binary for MIPS architecture can lead to uncontrolled resource consumption and DoS.
Pomerium is an open source identity-aware access proxy. Envoy, which Pomerium is based on, incorrectly handles resetting of HTTP/2 streams with excessive complexity. This can lead to high CPU utilization when a large number of streams are reset. This can result in a DoS condition. Pomerium versions 0.14.8 and 0.15.1 contain an upgraded envoy binary with this vulnerability patched.
Large loop in the PNRP dissector in Wireshark 3.4.0 to 3.4.9 and 3.2.0 to 3.2.17 allows denial of service via packet injection or crafted capture file
Large loop in the Bluetooth DHT dissector in Wireshark 3.4.0 to 3.4.9 and 3.2.0 to 3.2.17 allows denial of service via packet injection or crafted capture file
When reading a specially crafted 7Z archive, the construction of the list of codecs that decompress an entry can result in an infinite loop. This could be used to mount a denial of service attack against services that use Compress' sevenz package.
Envoy is an open source L7 proxy and communication bus designed for large modern service oriented architectures. In affected versions envoy’s procedure for resetting a HTTP/2 stream has O(N^2) complexity, leading to high CPU utilization when a large number of streams are reset. Deployments are susceptible to Denial of Service when Envoy is configured with high limit on H/2 concurrent streams. An attacker wishing to exploit this vulnerability would require a client opening and closing a large number of H/2 streams. Envoy versions 1.19.1, 1.18.4, 1.17.4, 1.16.5 contain fixes to reduce time complexity of resetting HTTP/2 streams. As a workaround users may limit the number of simultaneous HTTP/2 dreams for upstream and downstream peers to a low number, i.e. 100.
In ASUS RT-AX3000, ZenWiFi AX (XT8), RT-AX88U, and other ASUS routers with firmware < 3.0.0.4.386.42095 or < 9.0.0.4.386.41994, when IPv6 is used, a routing loop can occur that generates excessive network traffic between an affected device and its upstream ISP's router. This occurs when a link prefix route points to a point-to-point link, a destination IPv6 address belongs to the prefix and is not a local IPv6 address, and a router advertisement is received with at least one global unique IPv6 prefix for which the on-link flag is set.
In TP-Link TL-XDR3230 < 1.0.12, TL-XDR1850 < 1.0.9, TL-XDR1860 < 1.0.14, TL-XDR3250 < 1.0.2, TL-XDR6060 Turbo < 1.1.8, TL-XDR5430 < 1.0.11, and possibly others, when IPv6 is used, a routing loop can occur that generates excessive network traffic between an affected device and its upstream ISP's router. This occurs when a link prefix route points to a point-to-point link, a destination IPv6 address belongs to the prefix and is not a local IPv6 address, and a router advertisement is received with at least one global unique IPv6 prefix for which the on-link flag is set.
In Gargoyle OS 1.12.0, when IPv6 is used, a routing loop can occur that generates excessive network traffic between an affected device and its upstream ISP's router. This occurs when a link prefix route points to a point-to-point link, a destination IPv6 address belongs to the prefix and is not a local IPv6 address, and a router advertisement is received with at least one global unique IPv6 prefix for which the on-link flag is set.
srs2.c in PostSRSd before 1.10 allows remote attackers to cause a denial of service (CPU consumption) via a long timestamp tag in an SRS address.
A flaw was found in the AD DC NBT server in all Samba versions before 4.10.17, before 4.11.11 and before 4.12.4. A samba user could send an empty UDP packet to cause the samba server to crash.
Legacy C++ Facebook Thrift servers (using cpp instead of cpp2) would not error upon receiving messages with containers of fields of unknown type. As a result, malicious clients could send short messages which would take a long time for the server to parse, potentially leading to denial of service. This issue affects Facebook Thrift prior to v2019.05.06.00.
Python Facebook Thrift servers would not error upon receiving messages with containers of fields of unknown type. As a result, malicious clients could send short messages which would take a long time for the server to parse, potentially leading to denial of service. This issue affects Facebook Thrift prior to v2019.02.18.00.