A vulnerability in the Live Data server of Cisco Unified Intelligence Center could allow an unauthenticated, local attacker to read and modify data in a repository that belongs to an internal service on an affected device. This vulnerability is due to insufficient access control implementations on cluster configuration CLI requests. An attacker could exploit this vulnerability by sending a cluster configuration CLI request to specific directories on an affected device. A successful exploit could allow the attacker to read and modify data that is handled by an internal service on the affected device.
A vulnerability in the access control list (ACL) programming for port channel subinterfaces of Cisco Nexus 3000 and 9000 Series Switches in standalone NX-OS mode could allow an unauthenticated, remote attacker to send traffic that should be blocked through an affected device. This vulnerability is due to incorrect hardware programming that occurs when configuration changes are made to port channel member ports. An attacker could exploit this vulnerability by attempting to send traffic through an affected device. A successful exploit could allow the attacker to access network resources that should be protected by an ACL that was applied on port channel subinterfaces.
A vulnerability in Cisco Nexus Dashboard could allow an authenticated, remote attacker to learn cluster deployment information on an affected device. This vulnerability is due to improper access controls on a specific API endpoint. An attacker could exploit this vulnerability by sending queries to the API endpoint. A successful exploit could allow an attacker to access metrics and information about devices in the Nexus Dashboard cluster.
A vulnerability in the CLI of Cisco IOS XR Software could allow an authenticated, local attacker to read any file in the file system of the underlying Linux operating system. The attacker must have valid credentials on the affected device. This vulnerability is due to incorrect validation of the arguments that are passed to a specific CLI command. An attacker could exploit this vulnerability by logging in to an affected device with low-privileged credentials and using the affected command. A successful exploit could allow the attacker access files in read-only mode on the Linux file system.
Cisco Application Policy Infrastructure Controller (APIC) devices with software before 1.0(3h) and 1.1 before 1.1(1j) and Nexus 9000 ACI Mode switches with software before 11.0(3h) and 11.1 before 11.1(1j) allow remote authenticated users to bypass intended RBAC restrictions via crafted REST requests, aka Bug ID CSCut12998.
The proxy engine in Cisco Advanced Malware Protection (AMP), when used with Email Security Appliance (ESA) 9.5.0-201, 9.6.0-051, and 9.7.0-125, allows remote attackers to bypass intended content restrictions via a malformed e-mail message containing an encoded file, aka Bug ID CSCux45338.
The API web interface in Cisco Prime Infrastructure before 3.1 and Cisco Evolved Programmable Network Manager before 1.2.4 allows remote authenticated users to bypass intended RBAC restrictions and obtain sensitive information, and consequently gain privileges, via crafted JSON data, aka Bug ID CSCuy12409.
Cisco Prime Infrastructure 2.2(2) does not properly restrict use of IFRAME elements, which makes it easier for remote attackers to conduct clickjacking attacks and unspecified other attacks via a crafted web site, related to a "cross-frame scripting (XFS)" issue, aka Bug ID CSCuw65846, a different vulnerability than CVE-2015-6434.
Cisco Identity Services Engine (ISE) before 2.0 allows remote authenticated users to bypass intended web-resource access restrictions via a direct request, aka Bug ID CSCuu45926.
Cisco IOS 15.2(04)M6 and 15.4(03)S lets physical-interface ACLs supersede tunnel-interface ACLs, which allows remote attackers to bypass intended network-traffic restrictions in opportunistic circumstances by using a tunnel, aka Bug ID CSCur01042.
The web interface in Cisco FireSIGHT Management Center 5.3.1.4 allows remote attackers to delete arbitrary system policies via modified parameters in a POST request, aka Bug ID CSCuu25390.
Cisco Unified Web and E-Mail Interaction Manager 9.0(2) and 11.0(1) improperly performs authorization, which allows remote authenticated users to read or write to stored data via unspecified vectors, aka Bug ID CSCuo89056.
Cisco Unified Web and E-Mail Interaction Manager 9.0(2) improperly performs authorization, which allows remote authenticated users to remove default messaging-queue system folders via unspecified vectors, aka Bug ID CSCuo89046.
Cisco TelePresence TC before 7.3.4 on Integrator C devices allows remote attackers to bypass authentication via vectors involving multiple request parameters, aka Bug ID CSCuv00604.
A vulnerability in the payload inspection for Ethernet Industrial Protocol (ENIP) traffic for Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass configured rules for ENIP traffic. This vulnerability is due to incomplete processing during deep packet inspection for ENIP packets. An attacker could exploit this vulnerability by sending a crafted ENIP packet to the targeted interface. A successful exploit could allow the attacker to bypass configured access control and intrusion policies that should trigger and drop for the ENIP packet.
A vulnerability in the Cisco IOS XE SD-WAN Software CLI could allow an authenticated, local attacker to elevate privileges and execute arbitrary code on the underlying operating system as the root user. An attacker must be authenticated on an affected device as a PRIV15 user. This vulnerability is due to insufficient file system protection and the presence of a sensitive file in the bootflash directory on an affected device. An attacker could exploit this vulnerability by overwriting an installer file stored in the bootflash directory with arbitrary commands that can be executed with root-level privileges. A successful exploit could allow the attacker to read and write changes to the configuration database on the affected device.
Multiple vulnerabilities in the payload inspection for Ethernet Industrial Protocol (ENIP) traffic for Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass configured rules for ENIP traffic. These vulnerabilities are due to incomplete processing during deep packet inspection for ENIP packets. An attacker could exploit these vulnerabilities by sending a crafted ENIP packet to the targeted interface. A successful exploit could allow the attacker to bypass configured access control and intrusion policies that should be activated for the ENIP packet.
Multiple vulnerabilities in the web-based management interface of the Cisco Catalyst Passive Optical Network (PON) Series Switches Optical Network Terminal (ONT) could allow an unauthenticated, remote attacker to perform the following actions: Log in with a default credential if the Telnet protocol is enabled Perform command injection Modify the configuration For more information about these vulnerabilities, see the Details section of this advisory.
The failover ipsec implementation in Cisco Adaptive Security Appliance (ASA) Software 9.1 before 9.1(6), 9.2 before 9.2(3.3), and 9.3 before 9.3(3) does not properly validate failover communication messages, which allows remote attackers to reconfigure an ASA device, and consequently obtain administrative control, by sending crafted UDP packets over the local network to the failover interface, aka Bug ID CSCur21069.
Cisco ASR 9000 devices with software 5.3.0.BASE do not recognize that certain ACL entries have a single-host constraint, which allows remote attackers to bypass intended network-resource access restrictions by using an address that was not supposed to have been allowed, aka Bug ID CSCur28806.
Cisco Virtual TelePresence Server Software does not properly restrict use of the serial port, which allows local users to execute arbitrary OS commands as root by leveraging vSphere controller administrative privileges, aka Bug ID CSCus61123.
The Management Interface on Cisco Content Services Switch (CSS) 11500 devices 8.20.4.02 and earlier allows remote attackers to bypass intended restrictions on local-network device access via crafted SSH packets, aka Bug ID CSCut14855.
The Posture module for Cisco Identity Services Engine (ISE), as distributed in Cisco AnyConnect Secure Mobility Client 4.0(64), allows local users to gain privileges via unspecified commands, aka Bug ID CSCut05797.
A vulnerability in the email filtering mechanism of Cisco Secure Email Gateway could allow an unauthenticated, remote attacker to bypass the configured rules and allow emails that should have been denied to flow through an affected device. This vulnerability is due to improper handling of email that passes through an affected device. An attacker could exploit this vulnerability by sending a crafted email through the affected device. A successful exploit could allow the attacker to bypass email filters on the affected device.
A vulnerability in the filesystem of Cisco IOS XE Software could allow an authenticated, local attacker within the IOx Guest Shell to modify the namespace container protections on an affected device. The vulnerability is due to insufficient file permissions. An attacker could exploit this vulnerability by modifying files that they should not have access to. A successful exploit could allow the attacker to remove container protections and perform file actions outside the namespace of the container.
A vulnerability in the fabric infrastructure file system access control of Cisco Nexus 9000 Series Fabric Switches in Application Centric Infrastructure (ACI) mode could allow an authenticated, local attacker to read arbitrary files on an affected system. This vulnerability is due to improper access control. An attacker with Administrator privileges could exploit this vulnerability by executing a specific vulnerable command on an affected device. A successful exploit could allow the attacker to read arbitrary files on the file system of the affected device.
Multiple vulnerabilities in Cisco Intersight Virtual Appliance could allow an unauthenticated, adjacent attacker to access sensitive internal services from an external interface. These vulnerabilities are due to insufficient restrictions for IPv4 or IPv6 packets that are received on the external management interface. An attacker could exploit these vulnerabilities by sending specific traffic to this interface on an affected device. A successful exploit could allow the attacker to access sensitive internal services and make configuration changes on the affected device.
Cisco TelePresence T, TelePresence TE, and TelePresence TC before 7.1 do not properly implement access control, which allows remote attackers to obtain root privileges by sending packets on the local network and allows physically proximate attackers to obtain root privileges via unspecified vectors, aka Bug ID CSCub67651.
A vulnerability in the fabric infrastructure VLAN connection establishment of Cisco Nexus 9000 Series Fabric Switches in Application Centric Infrastructure (ACI) Mode could allow an unauthenticated, adjacent attacker to bypass security validations and connect an unauthorized server to the infrastructure VLAN. This vulnerability is due to insufficient security requirements during the Link Layer Discovery Protocol (LLDP) setup phase of the infrastructure VLAN. An attacker could exploit this vulnerability by sending a crafted LLDP packet on the adjacent subnet to an affected device. A successful exploit could allow the attacker to connect an unauthorized server to the infrastructure VLAN, which is highly privileged. With a connection to the infrastructure VLAN, the attacker can make unauthorized connections to Cisco Application Policy Infrastructure Controller (APIC) services or join other host endpoints.
A vulnerability in the SSH management feature of multiple Cisco Access Points (APs) platforms could allow a local, authenticated user to modify files on the affected device and possibly gain escalated privileges. The vulnerability is due to improper checking on file operations within the SSH management interface. A network administrator user could exploit this vulnerability by accessing an affected device through SSH management to make a configuration change. A successful exploit could allow the attacker to gain privileges equivalent to the root user.
A vulnerability in the web-based messaging service interface of Cisco SD-WAN vManage Software could allow an unauthenticated, adjacent attacker to bypass authentication and authorization and modify the configuration of an affected system. To exploit this vulnerability, the attacker must be able to access an associated Cisco SD-WAN vEdge device. This vulnerability is due to insufficient authorization checks. An attacker could exploit this vulnerability by sending crafted HTTP requests to the web-based messaging service interface of an affected system. A successful exploit could allow the attacker to gain unauthenticated read and write access to the affected vManage system. With this access, the attacker could access information about the affected vManage system, modify the configuration of the system, or make configuration changes to devices that are managed by the system.
A vulnerability in the EtherChannel port subscription logic of Cisco Nexus 9500 Series Switches could allow an unauthenticated, remote attacker to bypass access control list (ACL) rules that are configured on an affected device. This vulnerability is due to oversubscription of resources that occurs when applying ACLs to port channel interfaces. An attacker could exploit this vulnerability by attempting to access network resources that are protected by the ACL. A successful exploit could allow the attacker to access network resources that would be protected by the ACL that was applied on the port channel interface.
Multiple vulnerabilities in the web UI and API endpoints of Cisco Application Policy Infrastructure Controller (APIC) or Cisco Cloud APIC could allow a remote attacker to perform a command injection or file upload attack on an affected system. For more information about these vulnerabilities, see the Details section of this advisory.
A vulnerability in Cisco SD-WAN vManage Software could allow an unauthenticated, adjacent attacker to gain access to sensitive information. This vulnerability is due to improper access controls on API endpoints when Cisco SD-WAN vManage Software is running in multi-tenant mode. An attacker with access to a device that is managed in the multi-tenant environment could exploit this vulnerability by sending a request to an affected API endpoint on the vManage system. A successful exploit could allow the attacker to gain access to sensitive information that may include hashed credentials that could be used in future attacks.
A vulnerability in the boot logic of Cisco Access Points Software could allow an authenticated, local attacker to execute unsigned code at boot time. The vulnerability is due to an improper check that is performed by the area of code that manages system startup processes. An attacker could exploit this vulnerability by modifying a specific file that is stored on the system, which would allow the attacker to bypass existing protections. A successful exploit could allow the attacker to execute unsigned code at boot time and bypass the software image verification check part of the secure boot process of an affected device. Note: To exploit this vulnerability, the attacker would need to have access to the development shell (devshell) on the device.
A vulnerability in the Local Packet Transport Services (LPTS) programming of the SNMP with the management plane protection feature of Cisco IOS XR Software could allow an unauthenticated, remote attacker to allow connections despite the management plane protection that is configured to deny access to the SNMP server of an affected device. This vulnerability is due to incorrect LPTS programming when using SNMP with management plane protection. An attacker could exploit this vulnerability by connecting to an affected device using SNMP. A successful exploit could allow the attacker to connect to the device on the configured SNMP ports. Valid credentials are required to execute any of the SNMP requests.
A vulnerability within the firewall configuration of the Cisco Application Policy Infrastructure Controller Enterprise Module (APIC-EM) could allow an unauthenticated, adjacent attacker to gain privileged access to services only available on the internal network of the device. The vulnerability is due to an incorrect firewall rule on the device. The misconfiguration could allow traffic sent to the public interface of the device to be forwarded to the internal virtual network of the APIC-EM. An attacker that is logically adjacent to the network on which the public interface of the affected APIC-EM resides could leverage this behavior to gain access to services listening on the internal network with elevated privileges. This vulnerability affects appliances or virtual devices running Cisco Application Policy Infrastructure Controller Enterprise Module prior to version 1.5. Cisco Bug IDs: CSCve89638.
A vulnerability in the web-based management interface of Cisco SD-WAN vManage Software could allow an authenticated, remote attacker to bypass authorization and modify the configuration of an affected system. The vulnerability is due to insufficient authorization checking on an affected system. An attacker could exploit this vulnerability by sending crafted HTTP requests to the web-based management interface of an affected system. A successful exploit could allow the attacker to gain privileges beyond what would normally be authorized for their configured user authorization level. This could allow the attacker to modify the configuration of an affected system.
A vulnerability in the web-based management interface of the Cisco RV110W Wireless-N VPN Firewall, RV130 VPN Router, RV130W Wireless-N Multifunction VPN Router, and RV215W Wireless-N VPN Router could allow an unauthenticated, remote attacker to bypass authentication and execute arbitrary commands with administrative commands on an affected device. The vulnerability is due to improper session management on affected devices. An attacker could exploit this vulnerability by sending a crafted HTTP request to the affected device. A successful exploit could allow the attacker to gain administrative access on the affected device.
A vulnerability in the file system on the pluggable USB 3.0 Solid State Drive (SSD) for Cisco IOS XE Software could allow an authenticated, physical attacker to remove the USB 3.0 SSD and modify sensitive areas of the file system, including the namespace container protections. The vulnerability occurs because the USB 3.0 SSD control data is not stored on the internal boot flash. An attacker could exploit this vulnerability by removing the USB 3.0 SSD, modifying or deleting files on the USB 3.0 SSD by using another device, and then reinserting the USB 3.0 SSD on the original device. A successful exploit could allow the attacker to remove container protections and perform file actions outside the namespace of the container with root privileges.
A vulnerability in Cisco IOS XE Wireless Controller Software for Cisco Catalyst 9800 Series Routers could allow an unauthenticated, adjacent attacker to send ICMPv6 traffic prior to the client being placed into RUN state. The vulnerability is due to an incomplete access control list (ACL) being applied prior to RUN state. An attacker could exploit this vulnerability by connecting to the associated service set identifier (SSID) and sending ICMPv6 traffic. A successful exploit could allow the attacker to send ICMPv6 traffic prior to RUN state.
A vulnerability in the Cisco IOS XE ROM Monitor (ROMMON) Software for Cisco 4000 Series Integrated Services Routers, Cisco ASR 920 Series Aggregation Services Routers, Cisco ASR 1000 Series Aggregation Services Routers, and Cisco cBR-8 Converged Broadband Routers could allow an unauthenticated, physical attacker to break the chain of trust and load a compromised software image on an affected device. The vulnerability is due to the presence of a debugging configuration option in the affected software. An attacker could exploit this vulnerability by connecting to an affected device through the console, forcing the device into ROMMON mode, and writing a malicious pattern using that specific option on the device. A successful exploit could allow the attacker to break the chain of trust and load a compromised software image on the affected device. A compromised software image is any software image that has not been digitally signed by Cisco.
A vulnerability in the Traversal Using Relays around NAT (TURN) server component of Cisco Expressway software could allow an unauthenticated, remote attacker to bypass security controls and send network traffic to restricted destinations. The vulnerability is due to improper validation of specific connection information by the TURN server within the affected software. An attacker could exploit this issue by sending specially crafted network traffic to the affected software. A successful exploit could allow the attacker to send traffic through the affected software to destinations beyond the application, possibly allowing the attacker to gain unauthorized network access.
A vulnerability in the 802.1X feature of Cisco Catalyst 2960-L Series Switches and Cisco Catalyst CDB-8P Switches could allow an unauthenticated, adjacent attacker to forward broadcast traffic before being authenticated on the port. The vulnerability exists because broadcast traffic that is received on the 802.1X-enabled port is mishandled. An attacker could exploit this vulnerability by sending broadcast traffic on the port before being authenticated. A successful exploit could allow the attacker to send and receive broadcast traffic on the 802.1X-enabled port before authentication.
A vulnerability in the web-based management interface of Cisco Data Center Network Manager (DCNM) Software could allow an authenticated, remote attacker to bypass authorization on an affected device and access sensitive information that is related to the device. The vulnerability exists because the affected software allows users to access resources that are intended for administrators only. An attacker could exploit this vulnerability by submitting a crafted URL to an affected device. A successful exploit could allow the attacker to add, delete, and edit certain network configurations in the same manner as a user with administrative privileges.
A vulnerability in the management access list configuration of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass a configured management interface access list on an affected system. The vulnerability is due to the configuration of different management access lists, with ports allowed in one access list and denied in another. An attacker could exploit this vulnerability by sending crafted remote management traffic to the local IP address of an affected system. A successful exploit could allow the attacker to bypass the configured management access list policies, and traffic to the management interface would not be properly denied.
A vulnerability in the support tunnel feature of Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, local attacker to access the shell of an affected device even though expert mode is disabled. The vulnerability is due to improper configuration of the support tunnel feature. An attacker could exploit this vulnerability by enabling the support tunnel, setting a key, and deriving the tunnel password. A successful exploit could allow the attacker to run any system command with root access on an affected device.
A vulnerability in an access control mechanism of Cisco Cyber Vision Center Software could allow an unauthenticated, remote attacker to bypass authentication and access internal services that are running on an affected device. The vulnerability is due to insufficient enforcement of access control in the software. An attacker could exploit this vulnerability by directly accessing the internal services of an affected device. A successful exploit could allow an attacker to impact monitoring of sensors that are managed by the software.
A vulnerability in the application policy configuration of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to gain unauthorized read access to sensitive data on an affected device. The vulnerability is due to insufficient application identification. An attacker could exploit this vulnerability by sending crafted traffic to an affected device. A successful exploit could allow the attacker to gain unauthorized read access to sensitive data.
A vulnerability in Cisco Webex Meetings Suite sites and Cisco Webex Meetings Online sites could allow an unauthenticated, remote attendee to join a password-protected meeting without providing the meeting password. The connection attempt must initiate from a Webex mobile application for either iOS or Android. The vulnerability is due to unintended meeting information exposure in a specific meeting join flow for mobile applications. An unauthorized attendee could exploit this vulnerability by accessing a known meeting ID or meeting URL from the mobile device’s web browser. The browser will then request to launch the device’s Webex mobile application. A successful exploit could allow the unauthorized attendee to join the password-protected meeting. The unauthorized attendee will be visible in the attendee list of the meeting as a mobile attendee. Cisco has applied updates that address this vulnerability and no user action is required. This vulnerability affects Cisco Webex Meetings Suite sites and Cisco Webex Meetings Online sites releases earlier than 39.11.5 and 40.1.3.