A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 9184 of biosig.c on the current master branch (35a819fa), when the Tag is 131: else if (tag==131) //0x83 { // Patient Age if (len!=7) fprintf(stderr,"Warning MFER tag131 incorrect length %i!=7\n",len); curPos += ifread(buf,1,len,hdr);
A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 9090 of biosig.c on the current master branch (35a819fa), when the Tag is 64: else if (tag==64) //0x40 { // preamble char tmp[256]; // [1] curPos += ifread(tmp,1,len,hdr); In this case, the overflowed buffer is the newly-declared `tmp` \[1\] instead of `buf`. While `tmp` is larger than `buf`, having a size of 256 bytes, a stack overflow can still occur in cases where `len` is encoded using multiple octets and is greater than 256.
A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 8744 of biosig.c on the current master branch (35a819fa), when the Tag is 3: else if (tag==3) { // character code char v[17]; // [1] if (len>16) fprintf(stderr,"Warning MFER tag2 incorrect length %i>16\n",len); curPos += ifread(&v,1,len,hdr); v[len] = 0; In this case, the overflowed buffer is the newly-declared `v` \[1\] instead of `buf`. Since `v` is only 17 bytes large, much smaller values of `len` (even those encoded using a single octet) can trigger an overflow in this code path.
A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 8824 of biosig.c on the current master branch (35a819fa), when the Tag is 11: else if (tag==11) //0x0B { // Fs if (len>6) fprintf(stderr,"Warning MFER tag11 incorrect length %i>6\n",len); double fval; curPos += ifread(buf,1,len,hdr);
A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 8751 of biosig.c on the current master branch (35a819fa), when the Tag is 4: else if (tag==4) { // SPR if (len>4) fprintf(stderr,"Warning MFER tag4 incorrect length %i>4\n",len); curPos += ifread(buf,1,len,hdr);
A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 8759 of biosig.c on the current master branch (35a819fa), when the Tag is 5: else if (tag==5) //0x05: number of channels { uint16_t oldNS=hdr->NS; if (len>4) fprintf(stderr,"Warning MFER tag5 incorrect length %i>4\n",len); curPos += ifread(buf,1,len,hdr);
A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 8779 of biosig.c on the current master branch (35a819fa), when the Tag is 6: else if (tag==6) // 0x06 "number of sequences" { // NRec if (len>4) fprintf(stderr,"Warning MFER tag6 incorrect length %i>4\n",len); curPos += ifread(buf,1,len,hdr);
A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 8785 of biosig.c on the current master branch (35a819fa), when the Tag is 8: else if (tag==8) { if (len>2) fprintf(stderr,"Warning MFER tag8 incorrect length %i>2\n",len); curPos += ifread(buf,1,len,hdr);
A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 8842 of biosig.c on the current master branch (35a819fa), when the Tag is 12: else if (tag==12) //0x0C { // sampling resolution if (len>6) fprintf(stderr,"Warning MFER tag12 incorrect length %i>6\n",len); val32 = 0; int8_t v8; curPos += ifread(&UnitCode,1,1,hdr); curPos += ifread(&v8,1,1,hdr); curPos += ifread(buf,1,len-2,hdr); In addition to values of `len` greater than 130 triggering a buffer overflow, a value of `len` smaller than 2 will also trigger a buffer overflow due to an integer underflow when computing `len-2` in this code path.
A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 8850 of biosig.c on the current master branch (35a819fa), when the Tag is 13: else if (tag==13) { if (len>8) fprintf(stderr,"Warning MFER tag13 incorrect length %i>8\n",len); curPos += ifread(&buf,1,len,hdr);
A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 8970 of biosig.c on the current master branch (35a819fa), when the Tag is 63: else if (tag==63) { uint8_t tag2=255, len2=255; count = 0; while ((count<len) && !(FlagInfiniteLength && len2==0 && tag2==0)){ curPos += ifread(&tag2,1,1,hdr); curPos += ifread(&len2,1,1,hdr); if (VERBOSE_LEVEL==9) fprintf(stdout,"MFER: tag=%3i chan=%2i len=%-4i tag2=%3i len2=%3i curPos=%i %li count=%4i\n",tag,chan,len,tag2,len2,curPos,iftell(hdr),(int)count); if (FlagInfiniteLength && len2==0 && tag2==0) break; count += (2+len2); curPos += ifread(&buf,1,len2,hdr); Here, the number of bytes read is not the Data Length decoded from the current frame in the file (`len`) but rather is a new length contained in a single octet read from the same input file (`len2`). Despite this, a stack-based buffer overflow condition can still occur, as the destination buffer is still `buf`, which has a size of only 128 bytes, while `len2` can be as large as 255.
A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 9191 of biosig.c on the current master branch (35a819fa), when the Tag is 65: else if (tag==65) //0x41: patient event { // event table curPos += ifread(buf,1,len,hdr);
A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 9141 of biosig.c on the current master branch (35a819fa), when the Tag is 67: else if (tag==67) //0x43: Sample skew { int skew=0; // [1] curPos += ifread(&skew, 1, len,hdr); In this case, the address of the newly-defined integer `skew` \[1\] is overflowed instead of `buf`. This means a stack overflow can occur using much smaller values of `len` in this code path.
A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
A stack-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.This vulnerability manifests on line 8719 of biosig.c on the current master branch (35a819fa), when the Tag is 0: if (tag==0) { if (len!=1) fprintf(stderr,"Warning MFER tag0 incorrect length %i!=1\n",len); curPos += ifread(buf,1,len,hdr); }
An integer overflow vulnerability exists in the ABF parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted ABF file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
A heap-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
A heap-based buffer overflow vulnerability exists in the ISHNE parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted ISHNE ECG annotations file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
A use-after-free vulnerability exists in the sopen_FAMOS_read functionality of The Biosig Project libbiosig 2.5.0 and Master Branch (ab0ee111). A specially crafted .famos file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
A double-free vulnerability exists in the BrainVision ASCII Header Parsing functionality of The Biosig Project libbiosig 2.5.0 and Master Branch (ab0ee111). A specially crafted .vdhr file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
An out-of-bounds write vulnerability exists in the sopen_FAMOS_read functionality of The Biosig Project libbiosig 2.5.0 and Master Branch (ab0ee111). A specially crafted .famos file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
An out-of-bounds write vulnerability exists in the BrainVisionMarker Parsing functionality of The Biosig Project libbiosig 2.5.0 and Master Branch (ab0ee111). A specially crafted .vmrk file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
An integer overflow vulnerability exists in the sopen_FAMOS_read functionality of The Biosig Project libbiosig 2.5.0 and Master Branch (ab0ee111). A specially crafted .famos file can lead to an out-of-bounds write which in turn can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
An integer underflow vulnerability exists in the sopen_FAMOS_read functionality of The Biosig Project libbiosig 2.5.0 and Master Branch (ab0ee111). A specially crafted .famos file can lead to an out-of-bounds write which in turn can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
A heap-based buffer overflow vulnerability exists in the .egi parsing functionality of The Biosig Project libbiosig 2.5.0 and Master Branch (ab0ee111). A specially crafted .egi file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
A double-free vulnerability exists in the BrainVision Header Parsing functionality of The Biosig Project libbiosig Master Branch (ab0ee111) and 2.5.0. A specially crafted .vdhr file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
A heap-based buffer overflow vulnerability exists in the Nex parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted .nex file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
A heap-based buffer overflow vulnerability exists in the RHS2000 parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted RHS2000 file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
An integer overflow vulnerability exists in the GDF parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted GDF file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
A heap-based buffer overflow vulnerability exists in the MFER parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted MFER file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
Tenda AX1806 v1.0.0.1 contains a stack overflow via the iptv.stb.port parameter in the function formGetIptv.
The <redacted>.so library, which is used by <redacted>, is vulnerable to a buffer overflow in the code that handles the deletion of certificates. This buffer overflow can be triggered by providing a long file path to the <redacted> action of the <redacted>.exe CGI binary or to the <redacted>.sh CGI script. This binary or script will write this file path to <redacted>, which is then read by <redacted>.so This issue affects Iocharger firmware for AC models before version 24120701. Likelihood: Moderate – An attacker will have to find this exploit by either obtaining the binaries involved in this vulnerability, or by trial and error. Furthermore, the attacker will need a (low privilege) account to gain access to the <redacted>.exe CGI binary or <redacted>.sh script to trigger the vulnerability, or convince a user with such access send an HTTP request that triggers it. Impact: High – The <redacted> process, which we assume is responsible for OCPP communication, will keep crashing after performing the exploit. This happens because the buffer overflow causes the process to segfault before <redacted> is removed. This means that, even though <redacted> is automatically restarted, it will crash again as soon as it tries to parse the text file. CVSS clarification. The attack can be executed over any network connection the station is listening to and serves the web interface (AV:N), and there are no additional security measure sin place that need to be circumvented (AC:L), the attack does not rely on preconditions (AT:N). The attack does require authentication, but the level of authentication is irrelevant (PR:L), it does not require user interaction (UI:N). The attack leads to reducred availability of the device (VC:N/VI:N/VA:H). THere is not impact on subsequent systems. (SC:N/SI:N/SA:N). Alltough this device is an EV charger handing significant amounts of power, we do not forsee a safety impact. The attack can be automated (AU:Y). Because the DoS condition is written to disk persistantly, it cannot be recovered by the user (R:I).
A vulnerability has been found in Tenda M3 1.0.0.12. Affected by this vulnerability is the function formGetMasterPassengerAnalyseData of the file /goform/getMasterPassengerAnalyseData. The manipulation of the argument Time leads to stack-based buffer overflow. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used.
Tenda AX1806 v1.0.0.1 contains a stack overflow via the iptv.stb.port parameter in the function setIptvInfo.
The Crestron AM-100 firmware 1.6.0.2, Crestron AM-101 firmware 2.7.0.1, Barco wePresent WiPG-1000P firmware 2.3.0.10, Barco wePresent WiPG-1600W before firmware 2.4.1.19, Extron ShareLink 200/250 firmware 2.0.3.4, Teq AV IT WIPS710 firmware 1.1.0.7, SHARP PN-L703WA firmware 1.4.2.3, Optoma WPS-Pro firmware 1.0.0.5, Blackbox HD WPS firmware 1.0.0.5, InFocus LiteShow3 firmware 1.0.16, and InFocus LiteShow4 2.0.0.7 are vulnerable to a stack buffer overflow in libAwgCgi.so's PARSERtoCHAR function. A remote, unauthenticated attacker can use this vulnerability to execute arbitrary code as root via a crafted request to the return.cgi endpoint.
Stack-based buffer overflow vulnerability exists in ELECOM wireless access points. By processing a specially crafted HTTP request, arbitrary code may be executed.
Tenda AX1806 v1.0.0.1 contains a stack overflow via the iptv.stb.mode parameter in the function setIptvInfo.
A vulnerability was found in D-Link DIR-513 up to 1.10 and classified as critical. This issue affects the function formSetWanL2TPcallback of the file /goform/formSetWanL2TPtriggers of the component HTTP POST Request Handler. The manipulation leads to stack-based buffer overflow. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. This vulnerability only affects products that are no longer supported by the maintainer.
Tenda AX1806 v1.0.0.1 contains a stack overflow via the adv.iptv.stbpvid parameter in the function formGetIptv.
Tenda AX1806 v1.0.0.1 contains a stack overflow via the iptv.city.vlan parameter in the function formGetIptv.
Tenda AX1806 v1.0.0.1 contains a stack overflow via the iptv.stb.mode parameter in the function formGetIptv.
This vulnerability allows remote attackers to execute arbitrary code on affected installations of NETGEAR R6400, R6700, R7000, R7850, R7900, R8000, RS400, and XR300 routers with firmware 1.0.4.84_10.0.58. Authentication is not required to exploit this vulnerability. The specific flaw exists within the check_ra service. A crafted raePolicyVersion in a RAE_Policy.json file can trigger an overflow of a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-9852.
Certain modem models developed by Askey has a Stack-based Buffer Overflow vulnerability, allowing unauthenticated remote attackers to control the program's execution flow and potentially execute arbitrary code.
libcurl versions from 7.36.0 to before 7.64.0 are vulnerable to a stack-based buffer overflow. The function creating an outgoing NTLM type-3 header (`lib/vauth/ntlm.c:Curl_auth_create_ntlm_type3_message()`), generates the request HTTP header contents based on previously received data. The check that exists to prevent the local buffer from getting overflowed is implemented wrongly (using unsigned math) and as such it does not prevent the overflow from happening. This output data can grow larger than the local buffer if very large 'nt response' data is extracted from a previous NTLMv2 header provided by the malicious or broken HTTP server. Such a 'large value' needs to be around 1000 bytes or more. The actual payload data copied to the target buffer comes from the NTLMv2 type-2 response header.
Advantech WebAccess before 8.4.3 allows unauthenticated remote attackers to execute arbitrary code or cause a denial of service (memory corruption) due to a stack-based buffer overflow when handling IOCTL 70533 RPC messages.
A flaw has been found in Tenda M3 1.0.0.12. Affected is the function formQuickIndex of the file /goform/QuickIndex. Executing manipulation of the argument PPPOEPassword can lead to stack-based buffer overflow. The attack can be launched remotely. The exploit has been published and may be used.
A vulnerability was found in Tenda AC20 16.03.08.12. This vulnerability affects the function save_virtualser_data of the file /goform/formSetVirtualSer. The manipulation of the argument list leads to stack-based buffer overflow. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used.
Tenda FH1201 v1.2.0.14 was discovered to contain a stack-based buffer overflow vulnerability via the PPPOEPassword parameter at ip/goform/QuickIndex.
A vulnerability in /goform/SetVirtualServerCfg in the sub_6320C function in Tenda AX1806 1.0.0.1 firmware leads to stack-based buffer overflow.
A vulnerability classified as critical was found in D-Link DI-8100 1.0. This vulnerability affects the function sprintf of the file /upnp_ctrl.asp of the component jhttpd. The manipulation of the argument remove_ext_proto/remove_ext_port leads to stack-based buffer overflow. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used.