A memory leak vulnerability in the of Juniper Networks Junos OS allows an attacker to cause a Denial of Service (DoS) to the device by sending specific commands from a peered BGP host and having those BGP states delivered to the vulnerable device. This issue affects: Juniper Networks Junos OS: 18.1 versions prior to 18.1R2-S4, 18.1R3-S1; 18.1X75 all versions. Versions before 18.1R1 are not affected.
Huawei AR1200 V200R006C10SPC300, AR160 V200R006C10SPC300, AR200 V200R006C10SPC300, AR2200 V200R006C10SPC300, AR3200 V200R006C10SPC300 devices have an improper resource management vulnerability. Due to the improper implementation of ACL mechanism, a remote attacker may send TCP messages to the management interface of the affected device to exploit this vulnerability. Successful exploit could exhaust the socket resource of management interface, leading to a DoS condition.
In Ruby before 2.2.10, 2.3.x before 2.3.7, 2.4.x before 2.4.4, 2.5.x before 2.5.1, and 2.6.0-preview1, an attacker can pass a large HTTP request with a crafted header to WEBrick server or a crafted body to WEBrick server/handler and cause a denial of service (memory consumption).
Specific IPv6 DHCP packets received by the jdhcpd daemon will cause a memory resource consumption issue to occur on a Junos OS device using the jdhcpd daemon configured to respond to IPv6 requests. Once started, memory consumption will eventually impact any IPv4 or IPv6 request serviced by the jdhcpd daemon, thus creating a Denial of Service (DoS) condition to clients requesting and not receiving IP addresses. Additionally, some clients which were previously holding IPv6 addresses will not have their IPv6 Identity Association (IA) address and network tables agreed upon by the jdhcpd daemon after the failover event occurs, which leads to more than one interface, and multiple IP addresses, being denied on the client. Affected releases are Juniper Networks Junos OS: 17.4 versions prior to 17.4R2; 18.1 versions prior to 18.1R2.
In WordPress through 4.9.2, unauthenticated attackers can cause a denial of service (resource consumption) by using the large list of registered .js files (from wp-includes/script-loader.php) to construct a series of requests to load every file many times.
The __read_etc_hosts_r function in libc/inet/resolv.c in uClibc-ng before 1.0.12 allows remote DNS servers to cause a denial of service (infinite loop) via a crafted packet.
The __decode_dotted function in libc/inet/resolv.c in uClibc-ng before 1.0.12 allows remote DNS servers to cause a denial of service (infinite loop) via vectors involving compressed items in a reply.
An issue was discovered in Icinga 2.x through 2.8.1. By sending specially crafted (authenticated and unauthenticated) requests, an attacker can exhaust a lot of memory on the server side, triggering the OOM killer.
Unspecified vulnerability in Adobe Flash Media Server (FMS) before 3.5.3 allows attackers to cause a denial of service (resource exhaustion) via unknown vectors.
Attackers can crash a Cisco IOS router or device, provided they can get to an interactive prompt (such as a login). This applies to some IOS 9.x, 10.x, and 11.x releases.
In FreeBSD before 11.1-STABLE, 11.2-RELEASE-p2, 11.1-RELEASE-p13, ip fragment reassembly code is vulnerable to a denial of service due to excessive system resource consumption. This issue can allow a remote attacker who is able to send an arbitrary ip fragments to cause the machine to consume excessive resources.
phpFreeChat 1.7 and earlier allows remote attackers to cause a denial of service by sending a large number of connect commands.
An issue in the Proxygen handling of HTTP2 parsing of headers/trailers can lead to a denial-of-service attack. This affects Proxygen prior to v2018.12.31.00.
A vulnerability in Trend Micro Smart Protection Server (Standalone) 3.x could allow an unauthenticated remote attacker to manipulate the product to send a large number of specially crafted HTTP requests to potentially cause the file system to fill up, eventually causing a denial of service (DoS) situation.
Denial of Service in GitHub repository radareorg/radare2 prior to 5.8.6.
qemu/qemu_monitor.c in libvirt allows attackers to cause a denial of service (memory consumption) via a large QEMU reply.
A Malformed h2 frame can cause 'std::out_of_range' exception when parsing priority meta data. This behavior can lead to denial-of-service. This affects all supported versions of HHVM (3.25.2, 3.24.6, and 3.21.10 and below) when using the proxygen server to handle HTTP2 requests.
A potential denial-of-service issue in the Proxygen handling of invalid HTTP2 priority settings (specifically a circular dependency). This affects Proxygen prior to v2018.12.31.00.
Bitcoin Core before v0.13.0 allows denial of service (memory exhaustion) triggered by the remote network alert system (deprecated since Q1 2016) if an attacker can sign a message with a certain private key that had been known by unintended actors, because of an infinitely sized map. This affects other uses of the codebase, such as Bitcoin Knots before v0.13.0.knots20160814 and many altcoins.
Philips e-Alert Unit (non-medical device), Version R2.1 and prior. The software does not properly restrict the size or amount of resources requested or influenced by an actor, which can be used to consume more resources than intended.
When F5 BIG-IP ASM 13.0.0-13.1.0.1, 12.1.0-12.1.3.5, 11.6.0-11.6.3.1, or 11.5.1-11.5.6 is processing HTTP requests, an unusually large number of parameters can cause excessive CPU usage in the BIG-IP ASM bd process.
Microsoft Internet Explorer 6 through 6.0.2900.2180, and 7.0.6000.16711, allows remote attackers to cause a denial of service (CPU consumption) via an automatically submitted form containing a KEYGEN element, a related issue to CVE-2009-1828.
The Symantec Encryption Management Server (SEMS) product, prior to version 3.4.2 MP1, may be susceptible to a denial of service (DoS) exploit. A DoS attack is a type of attack whereby the perpetrator attempts to make a particular machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a specific host within a network.
One of the data structures that holds TCP segments in all versions of FreeBSD prior to 11.2-RELEASE-p1, 11.1-RELEASE-p12, and 10.4-RELEASE-p10 uses an inefficient algorithm to reassemble the data. This causes the CPU time spent on segment processing to grow linearly with the number of segments in the reassembly queue. An attacker who has the ability to send TCP traffic to a victim system can degrade the victim system's network performance and/or consume excessive CPU by exploiting the inefficiency of TCP reassembly handling, with relatively small bandwidth cost.
An error within the "parse_sinar_ia()" function (internal/dcraw_common.cpp) within LibRaw versions prior to 0.19.1 can be exploited to exhaust available CPU resources.
An issue was discovered in Wowza Streaming Engine before 4.7.1. There is a denial of service (memory consumption) via a crafted HTTP request.
Microsoft Internet Explorer 7 through 7.0.6000.16711 allows remote attackers to cause a denial of service (unusable browser) by calling the window.print function in a loop, aka a "printing DoS attack," possibly a related issue to CVE-2009-0821.
Stack consumption vulnerability in the FTP Service in Microsoft Internet Information Services (IIS) 5.0 through 7.0 allows remote authenticated users to cause a denial of service (daemon crash) via a list (ls) -R command containing a wildcard that references a subdirectory, followed by a .. (dot dot), aka "IIS FTP Service DoS Vulnerability."
OctoRPKI does not limit the depth of a certificate chain, allowing for a CA to create children in an ad-hoc fashion, thereby making tree traversal never end.
An exploitable code execution vulnerability exists in the UDP network functionality of Yi Home Camera 27US 1.8.7.0D. A specially crafted set of UDP packets can allocate unlimited memory, resulting in denial of service. An attacker can send a set of packets to trigger this vulnerability.
jsoneditor is vulnerable to Inefficient Regular Expression Complexity
The resolver in nginx before 1.8.1 and 1.9.x before 1.9.10 does not properly limit CNAME resolution, which allows remote attackers to cause a denial of service (worker process resource consumption) via vectors related to arbitrary name resolution.
Philips Hue is vulnerable to a Denial of Service attack. Sending a SYN flood on port tcp/80 will freeze Philips Hue's hub and it will stop responding. The "hub" will stop operating and be frozen until the flood stops. During the flood, the user won't be able to turn on/off the lights, and all of the hub's functionality will be unresponsive. The cloud service also won't work with the hub.
A memory consumption issue was addressed with improved memory handling. This issue is fixed in iCloud for Windows 7.7, watchOS 5, Safari 12, iOS 12, iTunes 12.9 for Windows, tvOS 12. Unexpected interaction causes an ASSERT failure.
A vulnerability has been identified in TeleControl Server Basic < V3.1. An attacker with access to the TeleControl Server Basic's webserver (port 80/tcp or 443/tcp) could cause a Denial-of-Service condition on the web server. The remaining functionality of the TeleControl Server Basic is not affected by the Denial-of-Service condition.
F5 BIG-IP 13.0.0-13.1.0.5, 12.1.0-12.1.3.5, or 11.6.0-11.6.3.1 virtual servers with HTTP/2 profiles enabled are vulnerable to "HPACK Bomb".
An issue was discovered in certain Apple products. iOS before 11.2.5 is affected. macOS before 10.13.3 is affected. watchOS before 4.2.2 is affected. The issue involves the "LinkPresentation" component. It allows remote attackers to cause a denial of service (resource consumption) via a crafted text message.
Node.js versions 9.7.0 and later and 10.x are vulnerable and the severity is MEDIUM. A bug introduced in 9.7.0 increases the memory consumed when reading from the network into JavaScript using the net.Socket object directly as a stream. An attacker could use this cause a denial of service by sending tiny chunks of data in short succession. This vulnerability was restored by reverting to the prior behaviour.
A vulnerability has been identified in SIMATIC S7-200 SMART CPU family (All versions >= V2.2 < V2.5.1). Affected devices do not properly handle large numbers of new incomming connections and could crash under certain circumstances. An attacker may leverage this to cause a Denial-of-Service situation.
An issue was discovered in Mattermost Server before 1.2.0. It allows attackers to cause a denial of service (memory consumption) via a small compressed file that has a large size when uncompressed.
A vulnerability was found in CodeMirror up to 5.17.0 and classified as problematic. Affected by this issue is some unknown functionality of the file mode/markdown/markdown.js of the component Markdown Mode. The manipulation leads to inefficient regular expression complexity. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. Not all code samples mentioned in the GitHub issue can be found. The repository mentions, that "CodeMirror 6 exists, and is [...] much more actively maintained."
Passport-SAML is a SAML 2.0 authentication provider for Passport, the Node.js authentication library. Prior to version 3.1.0, a malicious SAML payload can require transforms that consume significant system resources to process, thereby resulting in reduced or denied service. This would be an effective way to perform a denial-of-service attack. This has been resolved in version 3.1.0. The resolution is to limit the number of allowable transforms to 2.
A vulnerability has been found in MarkText up to 0.17.1 and classified as problematic. Affected by this vulnerability is the function getRecommendTitleFromMarkdownString of the file marktext/src/main/utils/index.js. The manipulation leads to inefficient regular expression complexity. The attack can be launched remotely. The exploit has been disclosed to the public and may be used.
NTP before 4.2.8p6 and 4.3.0 before 4.3.90 allows a remote attackers to cause a denial of service (stack exhaustion) via an ntpdc relist command, which triggers recursive traversal of the restriction list.
There is a Uncontrolled Resource Consumption vulnerability in Huawei Smartphone.Successful exploitation of this vulnerability may lead to Screen projection application denial of service.
In version v0.3.32 of open-webui/open-webui, the application allows users to submit large payloads in the email and password fields during the sign-in process due to the lack of character length validation on these inputs. This vulnerability can lead to a Denial of Service (DoS) condition when a user submits excessively large strings, exhausting server resources such as CPU, memory, and disk space, and rendering the service unavailable for legitimate users. This makes the server susceptible to resource exhaustion attacks without requiring authentication.
A Denial of Service (DoS) vulnerability was discovered in the file upload feature of netease-youdao/qanything version v2.0.0. The vulnerability is due to improper handling of form-data with a large filename in the file upload request. An attacker can exploit this vulnerability by sending a large filename, causing the server to become overwhelmed and unavailable for legitimate users. This attack does not require authentication, making it highly scalable and increasing the risk of exploitation.
A Denial of Service (DoS) vulnerability exists in the file upload feature of imartinez/privategpt version v0.6.2. The vulnerability is due to improper handling of form-data with a large filename in the file upload request. An attacker can exploit this by sending a payload with an excessively large filename, causing the server to become overwhelmed and unavailable to legitimate users.
A Denial of Service (DoS) vulnerability exists in the brycedrennan/imaginairy repository, version 15.0.0. The vulnerability is present in the `/api/stablestudio/generate` endpoint, which can be exploited by sending an invalid request. This causes the server process to terminate abruptly, outputting `KILLED` in the terminal, and results in the unavailability of the server. This issue disrupts the server's functionality, affecting all users.
A Denial of Service (DoS) vulnerability exists in the file upload feature of haotian-liu/llava, specifically in Release v1.2.0 (LLaVA-1.6). The vulnerability is due to improper handling of form-data with a large filename in the file upload request. By sending a payload with an excessively large filename, the server becomes overwhelmed and unresponsive, leading to unavailability for legitimate users. This issue can be exploited without authentication, making it highly scalable and increasing the risk of exploitation.