MDB Tools (aka mdbtools) 0.9.2 has a stack-based buffer overflow (at 0x7ffd0c689be0) in mdb_numeric_to_string (called from mdb_xfer_bound_data and _mdb_attempt_bind).
In Exynos_parsing_user_data_registered_itu_t_t35 of VendorVideoAPI.cpp, there is a possible out of bounds write due to an incorrect bounds check. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
In prepare_response_locked of lwis_transaction.c, there is a possible out of bounds write due to improper input validation. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
The packet_set_ring function in net/packet/af_packet.c in the Linux kernel through 4.10.6 does not properly validate certain block-size data, which allows local users to cause a denial of service (integer signedness error and out-of-bounds write), or gain privileges (if the CAP_NET_RAW capability is held), via crafted system calls.
drivers/char/virtio_console.c in the Linux kernel 4.9.x and 4.10.x before 4.10.12 interacts incorrectly with the CONFIG_VMAP_STACK option, which allows local users to cause a denial of service (system crash or memory corruption) or possibly have unspecified other impact by leveraging use of more than one virtual page for a DMA scatterlist.
NVIDIA Windows GPU Display Driver, all versions, contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape in which the size of an input buffer is not validated, which may lead to denial of service or escalation of privileges.
In the Linux kernel, the following vulnerability has been resolved: drm/xe/ufence: Prefetch ufence addr to catch bogus address access_ok() only checks for addr overflow so also try to read the addr to catch invalid addr sent from userspace. (cherry picked from commit 9408c4508483ffc60811e910a93d6425b8e63928)
In the Linux kernel, the following vulnerability has been resolved: media: uvcvideo: Skip parsing frames of type UVC_VS_UNDEFINED in uvc_parse_format This can lead to out of bounds writes since frames of this type were not taken into account when calculating the size of the frames buffer in uvc_parse_streaming.
AIDE before 0.17.4 allows local users to obtain root privileges via crafted file metadata (such as XFS extended attributes or tmpfs ACLs), because of a heap-based buffer overflow.
In the Linux kernel, the following vulnerability has been resolved: initramfs: avoid filename buffer overrun The initramfs filename field is defined in Documentation/driver-api/early-userspace/buffer-format.rst as: 37 cpio_file := ALGN(4) + cpio_header + filename + "\0" + ALGN(4) + data ... 55 ============= ================== ========================= 56 Field name Field size Meaning 57 ============= ================== ========================= ... 70 c_namesize 8 bytes Length of filename, including final \0 When extracting an initramfs cpio archive, the kernel's do_name() path handler assumes a zero-terminated path at @collected, passing it directly to filp_open() / init_mkdir() / init_mknod(). If a specially crafted cpio entry carries a non-zero-terminated filename and is followed by uninitialized memory, then a file may be created with trailing characters that represent the uninitialized memory. The ability to create an initramfs entry would imply already having full control of the system, so the buffer overrun shouldn't be considered a security vulnerability. Append the output of the following bash script to an existing initramfs and observe any created /initramfs_test_fname_overrunAA* path. E.g. ./reproducer.sh | gzip >> /myinitramfs It's easiest to observe non-zero uninitialized memory when the output is gzipped, as it'll overflow the heap allocated @out_buf in __gunzip(), rather than the initrd_start+initrd_size block. ---- reproducer.sh ---- nilchar="A" # change to "\0" to properly zero terminate / pad magic="070701" ino=1 mode=$(( 0100777 )) uid=0 gid=0 nlink=1 mtime=1 filesize=0 devmajor=0 devminor=1 rdevmajor=0 rdevminor=0 csum=0 fname="initramfs_test_fname_overrun" namelen=$(( ${#fname} + 1 )) # plus one to account for terminator printf "%s%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%s" \ $magic $ino $mode $uid $gid $nlink $mtime $filesize \ $devmajor $devminor $rdevmajor $rdevminor $namelen $csum $fname termpadlen=$(( 1 + ((4 - ((110 + $namelen) & 3)) % 4) )) printf "%.s${nilchar}" $(seq 1 $termpadlen) ---- reproducer.sh ---- Symlink filename fields handled in do_symlink() won't overrun past the data segment, due to the explicit zero-termination of the symlink target. Fix filename buffer overrun by aborting the initramfs FSM if any cpio entry doesn't carry a zero-terminator at the expected (name_len - 1) offset.
The mx4200_send function in the legacy MX4200 refclock in NTP before 4.2.8p10 and 4.3.x before 4.3.94 does not properly handle the return value of the snprintf function, which allows local users to execute arbitrary code via unspecified vectors, which trigger an out-of-bounds memory write.
An exploitable code execution vulnerability exists in the quota file functionality of E2fsprogs 1.45.3. A specially crafted ext4 partition can cause an out-of-bounds write on the heap, resulting in code execution. An attacker can corrupt a partition to trigger this vulnerability.
In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: Vangogh: Fix kernel memory out of bounds write KASAN reports that the GPU metrics table allocated in vangogh_tables_init() is not large enough for the memset done in smu_cmn_init_soft_gpu_metrics(). Condensed report follows: [ 33.861314] BUG: KASAN: slab-out-of-bounds in smu_cmn_init_soft_gpu_metrics+0x73/0x200 [amdgpu] [ 33.861799] Write of size 168 at addr ffff888129f59500 by task mangoapp/1067 ... [ 33.861808] CPU: 6 UID: 1000 PID: 1067 Comm: mangoapp Tainted: G W 6.12.0-rc4 #356 1a56f59a8b5182eeaf67eb7cb8b13594dd23b544 [ 33.861816] Tainted: [W]=WARN [ 33.861818] Hardware name: Valve Galileo/Galileo, BIOS F7G0107 12/01/2023 [ 33.861822] Call Trace: [ 33.861826] <TASK> [ 33.861829] dump_stack_lvl+0x66/0x90 [ 33.861838] print_report+0xce/0x620 [ 33.861853] kasan_report+0xda/0x110 [ 33.862794] kasan_check_range+0xfd/0x1a0 [ 33.862799] __asan_memset+0x23/0x40 [ 33.862803] smu_cmn_init_soft_gpu_metrics+0x73/0x200 [amdgpu 13b1bc364ec578808f676eba412c20eaab792779] [ 33.863306] vangogh_get_gpu_metrics_v2_4+0x123/0xad0 [amdgpu 13b1bc364ec578808f676eba412c20eaab792779] [ 33.864257] vangogh_common_get_gpu_metrics+0xb0c/0xbc0 [amdgpu 13b1bc364ec578808f676eba412c20eaab792779] [ 33.865682] amdgpu_dpm_get_gpu_metrics+0xcc/0x110 [amdgpu 13b1bc364ec578808f676eba412c20eaab792779] [ 33.866160] amdgpu_get_gpu_metrics+0x154/0x2d0 [amdgpu 13b1bc364ec578808f676eba412c20eaab792779] [ 33.867135] dev_attr_show+0x43/0xc0 [ 33.867147] sysfs_kf_seq_show+0x1f1/0x3b0 [ 33.867155] seq_read_iter+0x3f8/0x1140 [ 33.867173] vfs_read+0x76c/0xc50 [ 33.867198] ksys_read+0xfb/0x1d0 [ 33.867214] do_syscall_64+0x90/0x160 ... [ 33.867353] Allocated by task 378 on cpu 7 at 22.794876s: [ 33.867358] kasan_save_stack+0x33/0x50 [ 33.867364] kasan_save_track+0x17/0x60 [ 33.867367] __kasan_kmalloc+0x87/0x90 [ 33.867371] vangogh_init_smc_tables+0x3f9/0x840 [amdgpu] [ 33.867835] smu_sw_init+0xa32/0x1850 [amdgpu] [ 33.868299] amdgpu_device_init+0x467b/0x8d90 [amdgpu] [ 33.868733] amdgpu_driver_load_kms+0x19/0xf0 [amdgpu] [ 33.869167] amdgpu_pci_probe+0x2d6/0xcd0 [amdgpu] [ 33.869608] local_pci_probe+0xda/0x180 [ 33.869614] pci_device_probe+0x43f/0x6b0 Empirically we can confirm that the former allocates 152 bytes for the table, while the latter memsets the 168 large block. Root cause appears that when GPU metrics tables for v2_4 parts were added it was not considered to enlarge the table to fit. The fix in this patch is rather "brute force" and perhaps later should be done in a smarter way, by extracting and consolidating the part version to size logic to a common helper, instead of brute forcing the largest possible allocation. Nevertheless, for now this works and fixes the out of bounds write. v2: * Drop impossible v3_0 case. (Mario) (cherry picked from commit 0880f58f9609f0200483a49429af0f050d281703)
In writeInplace of Parcel.cpp, there is a possible out of bounds write. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix address emission with tag-based KASAN enabled When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission.
In the Linux kernel, the following vulnerability has been resolved: uprobe: avoid out-of-bounds memory access of fetching args Uprobe needs to fetch args into a percpu buffer, and then copy to ring buffer to avoid non-atomic context problem. Sometimes user-space strings, arrays can be very large, but the size of percpu buffer is only page size. And store_trace_args() won't check whether these data exceeds a single page or not, caused out-of-bounds memory access. It could be reproduced by following steps: 1. build kernel with CONFIG_KASAN enabled 2. save follow program as test.c ``` \#include <stdio.h> \#include <stdlib.h> \#include <string.h> // If string length large than MAX_STRING_SIZE, the fetch_store_strlen() // will return 0, cause __get_data_size() return shorter size, and // store_trace_args() will not trigger out-of-bounds access. // So make string length less than 4096. \#define STRLEN 4093 void generate_string(char *str, int n) { int i; for (i = 0; i < n; ++i) { char c = i % 26 + 'a'; str[i] = c; } str[n-1] = '\0'; } void print_string(char *str) { printf("%s\n", str); } int main() { char tmp[STRLEN]; generate_string(tmp, STRLEN); print_string(tmp); return 0; } ``` 3. compile program `gcc -o test test.c` 4. get the offset of `print_string()` ``` objdump -t test | grep -w print_string 0000000000401199 g F .text 000000000000001b print_string ``` 5. configure uprobe with offset 0x1199 ``` off=0x1199 cd /sys/kernel/debug/tracing/ echo "p /root/test:${off} arg1=+0(%di):ustring arg2=\$comm arg3=+0(%di):ustring" > uprobe_events echo 1 > events/uprobes/enable echo 1 > tracing_on ``` 6. run `test`, and kasan will report error. ================================================================== BUG: KASAN: use-after-free in strncpy_from_user+0x1d6/0x1f0 Write of size 8 at addr ffff88812311c004 by task test/499CPU: 0 UID: 0 PID: 499 Comm: test Not tainted 6.12.0-rc3+ #18 Hardware name: Red Hat KVM, BIOS 1.16.0-4.al8 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x55/0x70 print_address_description.constprop.0+0x27/0x310 kasan_report+0x10f/0x120 ? strncpy_from_user+0x1d6/0x1f0 strncpy_from_user+0x1d6/0x1f0 ? rmqueue.constprop.0+0x70d/0x2ad0 process_fetch_insn+0xb26/0x1470 ? __pfx_process_fetch_insn+0x10/0x10 ? _raw_spin_lock+0x85/0xe0 ? __pfx__raw_spin_lock+0x10/0x10 ? __pte_offset_map+0x1f/0x2d0 ? unwind_next_frame+0xc5f/0x1f80 ? arch_stack_walk+0x68/0xf0 ? is_bpf_text_address+0x23/0x30 ? kernel_text_address.part.0+0xbb/0xd0 ? __kernel_text_address+0x66/0xb0 ? unwind_get_return_address+0x5e/0xa0 ? __pfx_stack_trace_consume_entry+0x10/0x10 ? arch_stack_walk+0xa2/0xf0 ? _raw_spin_lock_irqsave+0x8b/0xf0 ? __pfx__raw_spin_lock_irqsave+0x10/0x10 ? depot_alloc_stack+0x4c/0x1f0 ? _raw_spin_unlock_irqrestore+0xe/0x30 ? stack_depot_save_flags+0x35d/0x4f0 ? kasan_save_stack+0x34/0x50 ? kasan_save_stack+0x24/0x50 ? mutex_lock+0x91/0xe0 ? __pfx_mutex_lock+0x10/0x10 prepare_uprobe_buffer.part.0+0x2cd/0x500 uprobe_dispatcher+0x2c3/0x6a0 ? __pfx_uprobe_dispatcher+0x10/0x10 ? __kasan_slab_alloc+0x4d/0x90 handler_chain+0xdd/0x3e0 handle_swbp+0x26e/0x3d0 ? __pfx_handle_swbp+0x10/0x10 ? uprobe_pre_sstep_notifier+0x151/0x1b0 irqentry_exit_to_user_mode+0xe2/0x1b0 asm_exc_int3+0x39/0x40 RIP: 0033:0x401199 Code: 01 c2 0f b6 45 fb 88 02 83 45 fc 01 8b 45 fc 3b 45 e4 7c b7 8b 45 e4 48 98 48 8d 50 ff 48 8b 45 e8 48 01 d0 ce RSP: 002b:00007ffdf00576a8 EFLAGS: 00000206 RAX: 00007ffdf00576b0 RBX: 0000000000000000 RCX: 0000000000000ff2 RDX: 0000000000000ffc RSI: 0000000000000ffd RDI: 00007ffdf00576b0 RBP: 00007ffdf00586b0 R08: 00007feb2f9c0d20 R09: 00007feb2f9c0d20 R10: 0000000000000001 R11: 0000000000000202 R12: 0000000000401040 R13: 00007ffdf0058780 R14: 0000000000000000 R15: 0000000000000000 </TASK> This commit enforces the buffer's maxlen less than a page-size to avoid store_trace_args() out-of-memory access.
An exploitable stack buffer overflow vulnerability exists in the iocheckd service ‘I/O-Check’ functionality of WAGO PFC 200 version 03.02.02(14). A specially crafted XML cache file written to a specific location on the device can cause a stack buffer overflow, resulting in code execution. An attacker can send a specially crafted packet to trigger the parsing of this cache file.
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix kernel bug due to missing clearing of checked flag Syzbot reported that in directory operations after nilfs2 detects filesystem corruption and degrades to read-only, __block_write_begin_int(), which is called to prepare block writes, may fail the BUG_ON check for accesses exceeding the folio/page size, triggering a kernel bug. This was found to be because the "checked" flag of a page/folio was not cleared when it was discarded by nilfs2's own routine, which causes the sanity check of directory entries to be skipped when the directory page/folio is reloaded. So, fix that. This was necessary when the use of nilfs2's own page discard routine was applied to more than just metadata files.
Vulnerability in the Solaris component of Oracle Sun Systems Products Suite (subcomponent: Kernel). Supported versions that are affected are 10 and 11. Easily exploitable vulnerability allows low privileged attacker with logon to the infrastructure where Solaris executes to compromise Solaris. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Solaris accessible data as well as unauthorized read access to a subset of Solaris accessible data and unauthorized ability to cause a partial denial of service (partial DOS) of Solaris. CVSS 3.0 Base Score 5.3 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:L).
A heap-based buffer overflow was found in QEMU through 5.0.0 in the SDHCI device emulation support. It could occur while doing a multi block SDMA transfer via the sdhci_sdma_transfer_multi_blocks() routine in hw/sd/sdhci.c. A guest user or process could use this flaw to crash the QEMU process on the host, resulting in a denial of service condition, or potentially execute arbitrary code with privileges of the QEMU process on the host.
In the Linux kernel through 5.15.2, hw_atl_utils_fw_rpc_wait in drivers/net/ethernet/aquantia/atlantic/hw_atl/hw_atl_utils.c allows an attacker (who can introduce a crafted device) to trigger an out-of-bounds write via a crafted length value.
The firewire subsystem in the Linux kernel through 5.14.13 has a buffer overflow related to drivers/media/firewire/firedtv-avc.c and drivers/media/firewire/firedtv-ci.c, because avc_ca_pmt mishandles bounds checking.
A buffer overflow [CWE-121] in the TFTP client library of FortiOS before 6.4.7 and FortiOS 7.0.0 through 7.0.2, may allow an authenticated local attacker to achieve arbitrary code execution via specially crafted command line arguments.
In vring_init of external/headers/include/virtio/virtio_ring.h, there is a possible out of bounds write due to a logic error in the code. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
Memory corruption while invoking IOCTL calls from userspace to camera kernel driver to dump request information.
The decode_data function in drivers/net/hamradio/6pack.c in the Linux kernel before 5.13.13 has a slab out-of-bounds write. Input from a process that has the CAP_NET_ADMIN capability can lead to root access.
Memory corruption may occur when invoking IOCTL calls from userspace to the camera kernel driver to dump request information, due to a missing memory requirement check.
In the Linux kernel, the following vulnerability has been resolved: bus: mhi: core: Validate channel ID when processing command completions MHI reads the channel ID from the event ring element sent by the device which can be any value between 0 and 255. In order to prevent any out of bound accesses, add a check against the maximum number of channels supported by the controller and those channels not configured yet so as to skip processing of that event ring element.
Memory corruption while handling schedule request in Camera Request Manager(CRM) due to invalid link count in the corresponding session.
An issue was discovered in net/rds/af_rds.c in the Linux kernel before 4.11. There is an out of bounds write and read in the function rds_recv_track_latency.
An exploitable stack buffer overflow vulnerability vulnerability exists in the iocheckd service ‘I/O-Check’ functionality of WAGO PFC 200 Firmware version 03.02.02(14). An attacker can send a specially crafted packet to trigger the parsing of this cache file.
A flaw was found in the HFS filesystem. When reading an HFS volume's name at grub_fs_mount(), the HFS filesystem driver performs a strcpy() using the user-provided volume name as input without properly validating the volume name's length. This issue may read to a heap-based out-of-bounds writer, impacting grub's sensitive data integrity and eventually leading to a secure boot protection bypass.
An issue was discovered in drivers/i2c/i2c-core-smbus.c in the Linux kernel before 4.14.15. There is an out of bounds write in the function i2c_smbus_xfer_emulated.
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Validate TA binary size Add TA binary size validation to avoid OOB write. (cherry picked from commit c0a04e3570d72aaf090962156ad085e37c62e442)
The HMAC implementation (crypto/hmac.c) in the Linux kernel before 4.14.8 does not validate that the underlying cryptographic hash algorithm is unkeyed, allowing a local attacker able to use the AF_ALG-based hash interface (CONFIG_CRYPTO_USER_API_HASH) and the SHA-3 hash algorithm (CONFIG_CRYPTO_SHA3) to cause a kernel stack buffer overflow by executing a crafted sequence of system calls that encounter a missing SHA-3 initialization.
A stack-based buffer overflow vulnerability in Trend Micro Apex One, Apex One as a Service and Worry-Free Business Security 10.0 SP1 could allow a local attacker to escalate privileges on affected installations. Please note: an attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
A heap buffer overflow in the TFTP receiving code allows for DoS or arbitrary code execution in libcurl versions 7.19.4 through 7.64.1.
An exploitable stack buffer overflow vulnerability vulnerability exists in the iocheckd service ‘I/O-Check’ functionality of WAGO PFC 200 Firmware version 03.02.02(14). An attacker can send a specially crafted packet to trigger the parsing of this cache file. The destination buffer sp+0x440 is overflowed with the call to sprintf() for any ip values that are greater than 1024-len(‘/etc/config-tools/config_interfaces interface=X1 state=enabled ip-address=‘) in length. A ip value of length 0x3da will cause the service to crash.
An exploitable stack buffer overflow vulnerability vulnerability exists in the iocheckd service ‘I/O-Check’ functionality of WAGO PFC 200 Firmware version 03.02.02(14). A specially crafted XML cache file written to a specific location on the device can cause a stack buffer overflow, resulting in code execution. An attacker can send a specially crafted packet to trigger the parsing of this cache file. The destination buffer sp+0x440 is overflowed with the call to sprintf() for any subnetmask values that are greater than 1024-len(‘/etc/config-tools/config_interfaces interface=X1 state=enabled subnet-mask=‘) in length. A subnetmask value of length 0x3d9 will cause the service to crash.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D6220 before 1.0.0.44, D6400 before 1.0.0.78, D7000v2 before 1.0.0.51, D8500 before 1.0.3.42, DGN2200v4 before 1.0.0.110, DGND2200Bv4 before 1.0.0.109, EX3700 before 1.0.0.70, EX3800 before 1.0.0.70, EX6000 before 1.0.0.30, EX6100 before 1.0.2.24, EX6120 before 1.0.0.40, EX6130 before 1.0.0.22, EX6150v1 before 1.0.0.42, EX6200 before 1.0.3.88, EX7000 before 1.0.0.66, R6250 before 1.0.4.26, R6300v2 before 1.0.4.28, R6400 before 1.0.1.36, R6400v2 before 1.0.2.52, R6700 before 1.0.1.46, R6900 before 1.0.1.46, R7000 before 1.0.9.28, R6900P before 1.3.1.44, R7000P before 1.3.1.44, R7100LG before 1.0.0.46, R7300DST before 1.0.0.68, R7900 before 1.0.2.10, R8000 before 1.0.4.12, R7900P before 1.3.0.10, R8000P before 1.3.0.10, R8300 before 1.0.2.122, R8500 before 1.0.2.122, WN2500RPv2 before 1.0.1.54, WNDR3400v3 before 1.0.1.22, and WNR3500Lv2 before 1.2.0.54.
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for the `Cudnn*` operations in TensorFlow can be tricked into accessing invalid memory, via a heap buffer overflow. This occurs because the ranks of the `input`, `input_h` and `input_c` parameters are not validated, but code assumes they have certain values. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
In ppmp_unprotect_buf of drm/code/drm_fw.c, there is a possible memory corruption due to a logic error in the code. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
K7 Antivirus Premium before 15.1.0.53 allows local users to write to arbitrary memory locations, and consequently gain privileges, via a specific set of IOCTL calls.
In the Linux kernel, the following vulnerability has been resolved: spi: bcm2835: Fix out-of-bounds access with more than 4 slaves Commit 571e31fa60b3 ("spi: bcm2835: Cache CS register value for ->prepare_message()") limited the number of slaves to 3 at compile-time. The limitation was necessitated by a statically-sized array prepare_cs[] in the driver private data which contains a per-slave register value. The commit sought to enforce the limitation at run-time by setting the controller's num_chipselect to 3: Slaves with a higher chipselect are rejected by spi_add_device(). However the commit neglected that num_chipselect only limits the number of *native* chipselects. If GPIO chipselects are specified in the device tree for more than 3 slaves, num_chipselect is silently raised by of_spi_get_gpio_numbers() and the result are out-of-bounds accesses to the statically-sized array prepare_cs[]. As a bandaid fix which is backportable to stable, raise the number of allowed slaves to 24 (which "ought to be enough for anybody"), enforce the limitation on slave ->setup and revert num_chipselect to 3 (which is the number of native chipselects supported by the controller). An upcoming for-next commit will allow an arbitrary number of slaves.
An issue was discovered in WibuKey64.sys in WIBU-SYSTEMS WibuKey before v6.70 and fixed in v.6.70. An improper bounds check allows crafted packets to cause an arbitrary address write, resulting in kernel memory corruption.
K7 Antivirus Premium before 15.1.0.53 allows local users to write to arbitrary memory locations, and consequently gain privileges, via a specific set of IOCTL calls.
A stack-based buffer overflow in Fortinet FortiWeb version 6.4.1 and 6.4.0, allows an authenticated attacker to execute unauthorized code or commands via crafted certificates loaded into the device.
K7 Antivirus Premium before 15.1.0.53 allows local users to write to arbitrary memory locations, and consequently gain privileges, via a specific set of IOCTL calls.
An issue was discovered on Samsung mobile devices with P(9.0) software. There is a heap overflow in the knox_kap driver. The Samsung ID is SVE-2019-14857 (November 2019).
In the Linux kernel, the following vulnerability has been resolved: s390/dasd: fix error recovery leading to data corruption on ESE devices Extent Space Efficient (ESE) or thin provisioned volumes need to be formatted on demand during usual IO processing. The dasd_ese_needs_format function checks for error codes that signal the non existence of a proper track format. The check for incorrect length is to imprecise since other error cases leading to transport of insufficient data also have this flag set. This might lead to data corruption in certain error cases for example during a storage server warmstart. Fix by removing the check for incorrect length and replacing by explicitly checking for invalid track format in transport mode. Also remove the check for file protected since this is not a valid ESE handling case.