Redis is an in-memory database that persists on disk. Prior to versions 6.2.7 and 7.0.0, an attacker attempting to load a specially crafted Lua script can cause NULL pointer dereference which will result with a crash of the redis-server process. The problem is fixed in Redis versions 7.0.0 and 6.2.7. An additional workaround to mitigate this problem without patching the redis-server executable, if Lua scripting is not being used, is to block access to `SCRIPT LOAD` and `EVAL` commands using ACL rules.
Redis is an in-memory database that persists on disk. Starting in version 7.0.8 and prior to version 7.0.10, authenticated users can use the MSETNX command to trigger a runtime assertion and termination of the Redis server process. The problem is fixed in Redis version 7.0.10.
Redis is an open source, in-memory database that persists on disk. Authenticated users can use the `HINCRBYFLOAT` command to create an invalid hash field that will crash Redis on access in affected versions. This issue has been addressed in in versions 7.0.11, 6.2.12, and 6.0.19. Users are advised to upgrade. There are no known workarounds for this issue.
Redis is an in-memory database that persists on disk. Authenticated users issuing specially crafted `SRANDMEMBER`, `ZRANDMEMBER`, and `HRANDFIELD` commands can trigger an integer overflow, resulting in a runtime assertion and termination of the Redis server process. This problem affects all Redis versions. Patches were released in Redis version(s) 6.0.18, 6.2.11 and 7.0.9.
Redis is an in-memory database that persists on disk. Authenticated users can issue a `HRANDFIELD` or `ZRANDMEMBER` command with specially crafted arguments to trigger a denial-of-service by crashing Redis with an assertion failure. This problem affects Redis versions 6.2 or newer up to but not including 6.2.9 as well as versions 7.0 up to but not including 7.0.8. Users are advised to upgrade. There are no known workarounds for this vulnerability.
Redis is an in-memory database that persists on disk. Authenticated users issuing specially crafted `SETRANGE` and `SORT(_RO)` commands can trigger an integer overflow, resulting with Redis attempting to allocate impossible amounts of memory and abort with an out-of-memory (OOM) panic. The problem is fixed in Redis versions 7.0.8, 6.2.9 and 6.0.17. Users are advised to upgrade. There are no known workarounds for this vulnerability.
Redis is an in-memory database that persists on disk. Authenticated users can use string matching commands (like `SCAN` or `KEYS`) with a specially crafted pattern to trigger a denial-of-service attack on Redis, causing it to hang and consume 100% CPU time. The problem is fixed in Redis versions 6.0.18, 6.2.11, 7.0.9.
In the Linux kernel, the following vulnerability has been resolved: perf: Improve missing SIGTRAP checking To catch missing SIGTRAP we employ a WARN in __perf_event_overflow(), which fires if pending_sigtrap was already set: returning to user space without consuming pending_sigtrap, and then having the event fire again would re-enter the kernel and trigger the WARN. This, however, seemed to miss the case where some events not associated with progress in the user space task can fire and the interrupt handler runs before the IRQ work meant to consume pending_sigtrap (and generate the SIGTRAP). syzbot gifted us this stack trace: | WARNING: CPU: 0 PID: 3607 at kernel/events/core.c:9313 __perf_event_overflow | Modules linked in: | CPU: 0 PID: 3607 Comm: syz-executor100 Not tainted 6.1.0-rc2-syzkaller-00073-g88619e77b33d #0 | Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022 | RIP: 0010:__perf_event_overflow+0x498/0x540 kernel/events/core.c:9313 | <...> | Call Trace: | <TASK> | perf_swevent_hrtimer+0x34f/0x3c0 kernel/events/core.c:10729 | __run_hrtimer kernel/time/hrtimer.c:1685 [inline] | __hrtimer_run_queues+0x1c6/0xfb0 kernel/time/hrtimer.c:1749 | hrtimer_interrupt+0x31c/0x790 kernel/time/hrtimer.c:1811 | local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1096 [inline] | __sysvec_apic_timer_interrupt+0x17c/0x640 arch/x86/kernel/apic/apic.c:1113 | sysvec_apic_timer_interrupt+0x40/0xc0 arch/x86/kernel/apic/apic.c:1107 | asm_sysvec_apic_timer_interrupt+0x16/0x20 arch/x86/include/asm/idtentry.h:649 | <...> | </TASK> In this case, syzbot produced a program with event type PERF_TYPE_SOFTWARE and config PERF_COUNT_SW_CPU_CLOCK. The hrtimer manages to fire again before the IRQ work got a chance to run, all while never having returned to user space. Improve the WARN to check for real progress in user space: approximate this by storing a 32-bit hash of the current IP into pending_sigtrap, and if an event fires while pending_sigtrap still matches the previous IP, we assume no progress (false negatives are possible given we could return to user space and trigger again on the same IP).
Synapse is an open source home server implementation for the Matrix chat network. In versions prior to 1.61.1 URL previews of some web pages can exhaust the available stack space for the Synapse process due to unbounded recursion. This is sometimes recoverable and leads to an error for the request causing the problem, but in other cases the Synapse process may crash altogether. It is possible to exploit this maliciously, either by malicious users on the homeserver, or by remote users sending URLs that a local user's client may automatically request a URL preview for. Remote users are not able to exploit this directly, because the URL preview endpoint is authenticated. Deployments with `url_preview_enabled: false` set in configuration are not affected. Deployments with `url_preview_enabled: true` set in configuration **are** affected. Deployments with no configuration value set for `url_preview_enabled` are not affected, because the default is `false`. Administrators of homeservers with URL previews enabled are advised to upgrade to v1.61.1 or higher. Users unable to upgrade should set `url_preview_enabled` to false.
rulex is a new, portable, regular expression language. When parsing untrusted rulex expressions, the stack may overflow, possibly enabling a Denial of Service attack. This happens when parsing an expression with several hundred levels of nesting, causing the process to abort immediately. This is a security concern for you, if your service parses untrusted rulex expressions (expressions provided by an untrusted user), and your service becomes unavailable when the process running rulex aborts due to a stack overflow. The crash is fixed in version **0.4.3**. Affected users are advised to update to this version. There are no known workarounds for this issue.
In PHP versions before 7.4.31, 8.0.24 and 8.1.11, the phar uncompressor code would recursively uncompress "quines" gzip files, resulting in an infinite loop.
In the Linux kernel, the following vulnerability has been resolved: powerpc/perf: Optimize clearing the pending PMI and remove WARN_ON for PMI check in power_pmu_disable commit 2c9ac51b850d ("powerpc/perf: Fix PMU callbacks to clear pending PMI before resetting an overflown PMC") added a new function "pmi_irq_pending" in hw_irq.h. This function is to check if there is a PMI marked as pending in Paca (PACA_IRQ_PMI).This is used in power_pmu_disable in a WARN_ON. The intention here is to provide a warning if there is PMI pending, but no counter is found overflown. During some of the perf runs, below warning is hit: WARNING: CPU: 36 PID: 0 at arch/powerpc/perf/core-book3s.c:1332 power_pmu_disable+0x25c/0x2c0 Modules linked in: ----- NIP [c000000000141c3c] power_pmu_disable+0x25c/0x2c0 LR [c000000000141c8c] power_pmu_disable+0x2ac/0x2c0 Call Trace: [c000000baffcfb90] [c000000000141c8c] power_pmu_disable+0x2ac/0x2c0 (unreliable) [c000000baffcfc10] [c0000000003e2f8c] perf_pmu_disable+0x4c/0x60 [c000000baffcfc30] [c0000000003e3344] group_sched_out.part.124+0x44/0x100 [c000000baffcfc80] [c0000000003e353c] __perf_event_disable+0x13c/0x240 [c000000baffcfcd0] [c0000000003dd334] event_function+0xc4/0x140 [c000000baffcfd20] [c0000000003d855c] remote_function+0x7c/0xa0 [c000000baffcfd50] [c00000000026c394] flush_smp_call_function_queue+0xd4/0x300 [c000000baffcfde0] [c000000000065b24] smp_ipi_demux_relaxed+0xa4/0x100 [c000000baffcfe20] [c0000000000cb2b0] xive_muxed_ipi_action+0x20/0x40 [c000000baffcfe40] [c000000000207c3c] __handle_irq_event_percpu+0x8c/0x250 [c000000baffcfee0] [c000000000207e2c] handle_irq_event_percpu+0x2c/0xa0 [c000000baffcff10] [c000000000210a04] handle_percpu_irq+0x84/0xc0 [c000000baffcff40] [c000000000205f14] generic_handle_irq+0x54/0x80 [c000000baffcff60] [c000000000015740] __do_irq+0x90/0x1d0 [c000000baffcff90] [c000000000016990] __do_IRQ+0xc0/0x140 [c0000009732f3940] [c000000bafceaca8] 0xc000000bafceaca8 [c0000009732f39d0] [c000000000016b78] do_IRQ+0x168/0x1c0 [c0000009732f3a00] [c0000000000090c8] hardware_interrupt_common_virt+0x218/0x220 This means that there is no PMC overflown among the active events in the PMU, but there is a PMU pending in Paca. The function "any_pmc_overflown" checks the PMCs on active events in cpuhw->n_events. Code snippet: <<>> if (any_pmc_overflown(cpuhw)) clear_pmi_irq_pending(); else WARN_ON(pmi_irq_pending()); <<>> Here the PMC overflown is not from active event. Example: When we do perf record, default cycles and instructions will be running on PMC6 and PMC5 respectively. It could happen that overflowed event is currently not active and pending PMI is for the inactive event. Debug logs from trace_printk: <<>> any_pmc_overflown: idx is 5: pmc value is 0xd9a power_pmu_disable: PMC1: 0x0, PMC2: 0x0, PMC3: 0x0, PMC4: 0x0, PMC5: 0xd9a, PMC6: 0x80002011 <<>> Here active PMC (from idx) is PMC5 , but overflown PMC is PMC6(0x80002011). When we handle PMI interrupt for such cases, if the PMC overflown is from inactive event, it will be ignored. Reference commit: commit bc09c219b2e6 ("powerpc/perf: Fix finding overflowed PMC in interrupt") Patch addresses two changes: 1) Fix 1 : Removal of warning ( WARN_ON(pmi_irq_pending()); ) We were printing warning if no PMC is found overflown among active PMU events, but PMI pending in PACA. But this could happen in cases where PMC overflown is not in active PMC. An inactive event could have caused the overflow. Hence the warning is not needed. To know pending PMI is from an inactive event, we need to loop through all PMC's which will cause more SPR reads via mfspr and increase in context switch. Also in existing function: perf_event_interrupt, already we ignore PMI's overflown when it is from an inactive PMC. 2) Fix 2: optimization in clearing pending PMI. Currently we check for any active PMC overflown before clearing PMI pending in Paca. This is causing additional SP ---truncated---
Mikrotik RouterOs 6.44.5 (long-term tree) suffers from an stack exhaustion vulnerability in the /nova/bin/net process. An authenticated remote attacker can cause a Denial of Service due to overloading the systems CPU.
In Xpdf 4.05 (and earlier), a PDF object loop in the PDF resources leads to infinite recursion and a stack overflow.
In the Linux kernel, the following vulnerability has been resolved: vsock: fix recursive ->recvmsg calls After a vsock socket has been added to a BPF sockmap, its prot->recvmsg has been replaced with vsock_bpf_recvmsg(). Thus the following recursiion could happen: vsock_bpf_recvmsg() -> __vsock_recvmsg() -> vsock_connectible_recvmsg() -> prot->recvmsg() -> vsock_bpf_recvmsg() again We need to fix it by calling the original ->recvmsg() without any BPF sockmap logic in __vsock_recvmsg().
An issue was discovered in Asterisk Open Source 13.x before 13.37.1, 16.x before 16.14.1, 17.x before 17.8.1, and 18.x before 18.0.1 and Certified Asterisk before 16.8-cert5. If Asterisk is challenged on an outbound INVITE and the nonce is changed in each response, Asterisk will continually send INVITEs in a loop. This causes Asterisk to consume more and more memory since the transaction will never terminate (even if the call is hung up), ultimately leading to a restart or shutdown of Asterisk. Outbound authentication must be configured on the endpoint for this to occur.
check_input_term in sound/usb/mixer.c in the Linux kernel through 5.2.9 mishandles recursion, leading to kernel stack exhaustion.
In Eclipse Mosquitto 1.5.0 to 1.6.5 inclusive, if a malicious MQTT client sends a SUBSCRIBE packet containing a topic that consists of approximately 65400 or more '/' characters, i.e. the topic hierarchy separator, then a stack overflow will occur.
mayswind ezbookkeeping versions 1.2.0 and earlier contain a critical vulnerability in JSON and XML file import processing. The application fails to validate nesting depth during parsing operations, allowing authenticated attackers to trigger denial of service conditions by uploading deeply nested malicious files. This results in CPU exhaustion, service degradation, or complete service unavailability.
MongoDB Server may experience an out-of-memory failure while evaluating expressions that produce deeply nested documents. The issue arises in recursive functions because the server does not periodically check the depth of the expression.
Uncontrolled recursion in XPath evaluation in libxml2 up to and including version 2.9.14 allows a local attacker to cause a stack overflow via crafted expressions. XPath processing functions `xmlXPathRunEval`, `xmlXPathCtxtCompile`, and `xmlXPathEvalExpr` were resetting recursion depth to zero before making potentially recursive calls. When such functions were called recursively this could allow for uncontrolled recursion and lead to a stack overflow. These functions now preserve recursion depth across recursive calls, allowing recursion depth to be controlled.
In the Linux kernel, the following vulnerability has been resolved: rcu: Avoid stack overflow due to __rcu_irq_enter_check_tick() being kprobe-ed Registering a kprobe on __rcu_irq_enter_check_tick() can cause kernel stack overflow as shown below. This issue can be reproduced by enabling CONFIG_NO_HZ_FULL and booting the kernel with argument "nohz_full=", and then giving the following commands at the shell prompt: # cd /sys/kernel/tracing/ # echo 'p:mp1 __rcu_irq_enter_check_tick' >> kprobe_events # echo 1 > events/kprobes/enable This commit therefore adds __rcu_irq_enter_check_tick() to the kprobes blacklist using NOKPROBE_SYMBOL(). Insufficient stack space to handle exception! ESR: 0x00000000f2000004 -- BRK (AArch64) FAR: 0x0000ffffccf3e510 Task stack: [0xffff80000ad30000..0xffff80000ad38000] IRQ stack: [0xffff800008050000..0xffff800008058000] Overflow stack: [0xffff089c36f9f310..0xffff089c36fa0310] CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19 Hardware name: linux,dummy-virt (DT) pstate: 400003c5 (nZcv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __rcu_irq_enter_check_tick+0x0/0x1b8 lr : ct_nmi_enter+0x11c/0x138 sp : ffff80000ad30080 x29: ffff80000ad30080 x28: ffff089c82e20000 x27: 0000000000000000 x26: 0000000000000000 x25: ffff089c02a8d100 x24: 0000000000000000 x23: 00000000400003c5 x22: 0000ffffccf3e510 x21: ffff089c36fae148 x20: ffff80000ad30120 x19: ffffa8da8fcce148 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: ffffa8da8e44ea6c x14: ffffa8da8e44e968 x13: ffffa8da8e03136c x12: 1fffe113804d6809 x11: ffff6113804d6809 x10: 0000000000000a60 x9 : dfff800000000000 x8 : ffff089c026b404f x7 : 00009eec7fb297f7 x6 : 0000000000000001 x5 : ffff80000ad30120 x4 : dfff800000000000 x3 : ffffa8da8e3016f4 x2 : 0000000000000003 x1 : 0000000000000000 x0 : 0000000000000000 Kernel panic - not syncing: kernel stack overflow CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0xf8/0x108 show_stack+0x20/0x30 dump_stack_lvl+0x68/0x84 dump_stack+0x1c/0x38 panic+0x214/0x404 add_taint+0x0/0xf8 panic_bad_stack+0x144/0x160 handle_bad_stack+0x38/0x58 __bad_stack+0x78/0x7c __rcu_irq_enter_check_tick+0x0/0x1b8 arm64_enter_el1_dbg.isra.0+0x14/0x20 el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 arm64_enter_el1_dbg.isra.0+0x14/0x20 el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 arm64_enter_el1_dbg.isra.0+0x14/0x20 el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 [...] el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 arm64_enter_el1_dbg.isra.0+0x14/0x20 el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 arm64_enter_el1_dbg.isra.0+0x14/0x20 el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 el1_interrupt+0x28/0x60 el1h_64_irq_handler+0x18/0x28 el1h_64_irq+0x64/0x68 __ftrace_set_clr_event_nolock+0x98/0x198 __ftrace_set_clr_event+0x58/0x80 system_enable_write+0x144/0x178 vfs_write+0x174/0x738 ksys_write+0xd0/0x188 __arm64_sys_write+0x4c/0x60 invoke_syscall+0x64/0x180 el0_svc_common.constprop.0+0x84/0x160 do_el0_svc+0x48/0xe8 el0_svc+0x34/0xd0 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x190/0x194 SMP: stopping secondary CPUs Kernel Offset: 0x28da86000000 from 0xffff800008000000 PHYS_OFFSET: 0xfffff76600000000 CPU features: 0x00000,01a00100,0000421b Memory Limit: none
In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Check for any of tcp_bpf_prots when cloning a listener A listening socket linked to a sockmap has its sk_prot overridden. It points to one of the struct proto variants in tcp_bpf_prots. The variant depends on the socket's family and which sockmap programs are attached. A child socket cloned from a TCP listener initially inherits their sk_prot. But before cloning is finished, we restore the child's proto to the listener's original non-tcp_bpf_prots one. This happens in tcp_create_openreq_child -> tcp_bpf_clone. Today, in tcp_bpf_clone we detect if the child's proto should be restored by checking only for the TCP_BPF_BASE proto variant. This is not correct. The sk_prot of listening socket linked to a sockmap can point to to any variant in tcp_bpf_prots. If the listeners sk_prot happens to be not the TCP_BPF_BASE variant, then the child socket unintentionally is left if the inherited sk_prot by tcp_bpf_clone. This leads to issues like infinite recursion on close [1], because the child state is otherwise not set up for use with tcp_bpf_prot operations. Adjust the check in tcp_bpf_clone to detect all of tcp_bpf_prots variants. Note that it wouldn't be sufficient to check the socket state when overriding the sk_prot in tcp_bpf_update_proto in order to always use the TCP_BPF_BASE variant for listening sockets. Since commit b8b8315e39ff ("bpf, sockmap: Remove unhash handler for BPF sockmap usage") it is possible for a socket to transition to TCP_LISTEN state while already linked to a sockmap, e.g. connect() -> insert into map -> connect(AF_UNSPEC) -> listen(). [1]: https://lore.kernel.org/all/00000000000073b14905ef2e7401@google.com/
In the Linux kernel, the following vulnerability has been resolved: riscv: VMAP_STACK overflow detection thread-safe commit 31da94c25aea ("riscv: add VMAP_STACK overflow detection") added support for CONFIG_VMAP_STACK. If overflow is detected, CPU switches to `shadow_stack` temporarily before switching finally to per-cpu `overflow_stack`. If two CPUs/harts are racing and end up in over flowing kernel stack, one or both will end up corrupting each other state because `shadow_stack` is not per-cpu. This patch optimizes per-cpu overflow stack switch by directly picking per-cpu `overflow_stack` and gets rid of `shadow_stack`. Following are the changes in this patch - Defines an asm macro to obtain per-cpu symbols in destination register. - In entry.S, when overflow is detected, per-cpu overflow stack is located using per-cpu asm macro. Computing per-cpu symbol requires a temporary register. x31 is saved away into CSR_SCRATCH (CSR_SCRATCH is anyways zero since we're in kernel). Please see Links for additional relevant disccussion and alternative solution. Tested by `echo EXHAUST_STACK > /sys/kernel/debug/provoke-crash/DIRECT` Kernel crash log below Insufficient stack space to handle exception!/debug/provoke-crash/DIRECT Task stack: [0xff20000010a98000..0xff20000010a9c000] Overflow stack: [0xff600001f7d98370..0xff600001f7d99370] CPU: 1 PID: 205 Comm: bash Not tainted 6.1.0-rc2-00001-g328a1f96f7b9 #34 Hardware name: riscv-virtio,qemu (DT) epc : __memset+0x60/0xfc ra : recursive_loop+0x48/0xc6 [lkdtm] epc : ffffffff808de0e4 ra : ffffffff0163a752 sp : ff20000010a97e80 gp : ffffffff815c0330 tp : ff600000820ea280 t0 : ff20000010a97e88 t1 : 000000000000002e t2 : 3233206874706564 s0 : ff20000010a982b0 s1 : 0000000000000012 a0 : ff20000010a97e88 a1 : 0000000000000000 a2 : 0000000000000400 a3 : ff20000010a98288 a4 : 0000000000000000 a5 : 0000000000000000 a6 : fffffffffffe43f0 a7 : 00007fffffffffff s2 : ff20000010a97e88 s3 : ffffffff01644680 s4 : ff20000010a9be90 s5 : ff600000842ba6c0 s6 : 00aaaaaac29e42b0 s7 : 00fffffff0aa3684 s8 : 00aaaaaac2978040 s9 : 0000000000000065 s10: 00ffffff8a7cad10 s11: 00ffffff8a76a4e0 t3 : ffffffff815dbaf4 t4 : ffffffff815dbaf4 t5 : ffffffff815dbab8 t6 : ff20000010a9bb48 status: 0000000200000120 badaddr: ff20000010a97e88 cause: 000000000000000f Kernel panic - not syncing: Kernel stack overflow CPU: 1 PID: 205 Comm: bash Not tainted 6.1.0-rc2-00001-g328a1f96f7b9 #34 Hardware name: riscv-virtio,qemu (DT) Call Trace: [<ffffffff80006754>] dump_backtrace+0x30/0x38 [<ffffffff808de798>] show_stack+0x40/0x4c [<ffffffff808ea2a8>] dump_stack_lvl+0x44/0x5c [<ffffffff808ea2d8>] dump_stack+0x18/0x20 [<ffffffff808dec06>] panic+0x126/0x2fe [<ffffffff800065ea>] walk_stackframe+0x0/0xf0 [<ffffffff0163a752>] recursive_loop+0x48/0xc6 [lkdtm] SMP: stopping secondary CPUs ---[ end Kernel panic - not syncing: Kernel stack overflow ]---
Bucket is a MediaWiki extension to store and retrieve structured data on articles. Prior to version 1.0.0, infinite recursion can occur if a user queries a bucket using the `!=` comparator. This will result in PHP's call stack limit exceeding, and/or increased memory consumption, potentially leading to a denial of service. Version 1.0.0 contains a patch for the issue.
msgpackr is a fast MessagePack NodeJS/JavaScript implementation. Prior to 1.10.1, when decoding user supplied MessagePack messages, users can trigger stuck threads by crafting messages that keep the decoder stuck in a loop. The fix is available in v1.10.1. Exploits seem to require structured cloning, replacing the 0x70 extension with your own (that throws an error or does something other than recursive referencing) should mitigate the issue.
In the Linux kernel, the following vulnerability has been resolved: KVM: PPC: Book3S HV: Fix stack handling in idle_kvm_start_guest() In commit 10d91611f426 ("powerpc/64s: Reimplement book3s idle code in C") kvm_start_guest() became idle_kvm_start_guest(). The old code allocated a stack frame on the emergency stack, but didn't use the frame to store anything, and also didn't store anything in its caller's frame. idle_kvm_start_guest() on the other hand is written more like a normal C function, it creates a frame on entry, and also stores CR/LR into its callers frame (per the ABI). The problem is that there is no caller frame on the emergency stack. The emergency stack for a given CPU is allocated with: paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; So emergency_sp actually points to the first address above the emergency stack allocation for a given CPU, we must not store above it without first decrementing it to create a frame. This is different to the regular kernel stack, paca->kstack, which is initialised to point at an initial frame that is ready to use. idle_kvm_start_guest() stores the backchain, CR and LR all of which write outside the allocation for the emergency stack. It then creates a stack frame and saves the non-volatile registers. Unfortunately the frame it creates is not large enough to fit the non-volatiles, and so the saving of the non-volatile registers also writes outside the emergency stack allocation. The end result is that we corrupt whatever is at 0-24 bytes, and 112-248 bytes above the emergency stack allocation. In practice this has gone unnoticed because the memory immediately above the emergency stack happens to be used for other stack allocations, either another CPUs mc_emergency_sp or an IRQ stack. See the order of calls to irqstack_early_init() and emergency_stack_init(). The low addresses of another stack are the top of that stack, and so are only used if that stack is under extreme pressue, which essentially never happens in practice - and if it did there's a high likelyhood we'd crash due to that stack overflowing. Still, we shouldn't be corrupting someone else's stack, and it is purely luck that we aren't corrupting something else. To fix it we save CR/LR into the caller's frame using the existing r1 on entry, we then create a SWITCH_FRAME_SIZE frame (which has space for pt_regs) on the emergency stack with the backchain pointing to the existing stack, and then finally we switch to the new frame on the emergency stack.
Envoy is an open source edge and service proxy, designed for cloud-native applications. When a cluster is deleted via Cluster Discovery Service (CDS) all idle connections established to endpoints in that cluster are disconnected. A recursion was introduced in the procedure of disconnecting idle connections that can lead to stack exhaustion and abnormal process termination when a cluster has a large number of idle connections. This infinite recursion causes Envoy to crash. Users are advised to upgrade.
graphql-go is a GraphQL server with a focus on ease of use. In versions prior to 1.3.0 there exists a DoS vulnerability that is possible due to a bug in the library that would allow an attacker with specifically designed queries to cause stack overflow panics. Any user with access to the GraphQL handler can send these queries and cause stack overflows. This in turn could potentially compromise the ability of the server to serve data to its users. The issue has been patched in version `v1.3.0`. The only known workaround for this issue is to disable the `graphql.MaxDepth` option from your schema which is not recommended.
Uncontrolled recursion in the Parse functions in go/parser before Go 1.17.12 and Go 1.18.4 allow an attacker to cause a panic due to stack exhaustion via deeply nested types or declarations.
In the Linux kernel, the following vulnerability has been resolved: block: avoid possible overflow for chunk_sectors check in blk_stack_limits() In blk_stack_limits(), we check that the t->chunk_sectors value is a multiple of the t->physical_block_size value. However, by finding the chunk_sectors value in bytes, we may overflow the unsigned int which holds chunk_sectors, so change the check to be based on sectors.
In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Fix stack protector issue in send_ipi_data() Function kvm_io_bus_read() is called in function send_ipi_data(), buffer size of parameter *val should be at least 8 bytes. Since some emulation functions like loongarch_ipi_readl() and kvm_eiointc_read() will write the buffer *val with 8 bytes signed extension regardless parameter len. Otherwise there will be buffer overflow issue when CONFIG_STACKPROTECTOR is enabled. The bug report is shown as follows: Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: send_ipi_data+0x194/0x1a0 [kvm] CPU: 11 UID: 107 PID: 2692 Comm: CPU 0/KVM Not tainted 6.17.0-rc1+ #102 PREEMPT(full) Stack : 9000000005901568 0000000000000000 9000000003af371c 900000013c68c000 900000013c68f850 900000013c68f858 0000000000000000 900000013c68f998 900000013c68f990 900000013c68f990 900000013c68f6c0 fffffffffffdb058 fffffffffffdb0e0 900000013c68f858 911e1d4d39cf0ec2 9000000105657a00 0000000000000001 fffffffffffffffe 0000000000000578 282049464555206e 6f73676e6f6f4c20 0000000000000001 00000000086b4000 0000000000000000 0000000000000000 0000000000000000 9000000005709968 90000000058f9000 900000013c68fa68 900000013c68fab4 90000000029279f0 900000010153f940 900000010001f360 0000000000000000 9000000003af3734 000000004390000c 00000000000000b0 0000000000000004 0000000000000000 0000000000071c1d ... Call Trace: [<9000000003af3734>] show_stack+0x5c/0x180 [<9000000003aed168>] dump_stack_lvl+0x6c/0x9c [<9000000003ad0ab0>] vpanic+0x108/0x2c4 [<9000000003ad0ca8>] panic+0x3c/0x40 [<9000000004eb0a1c>] __stack_chk_fail+0x14/0x18 [<ffff8000023473f8>] send_ipi_data+0x190/0x1a0 [kvm] [<ffff8000023313e4>] __kvm_io_bus_write+0xa4/0xe8 [kvm] [<ffff80000233147c>] kvm_io_bus_write+0x54/0x90 [kvm] [<ffff80000233f9f8>] kvm_emu_iocsr+0x180/0x310 [kvm] [<ffff80000233fe08>] kvm_handle_gspr+0x280/0x478 [kvm] [<ffff8000023443e8>] kvm_handle_exit+0xc0/0x130 [kvm]
In the Linux kernel, the following vulnerability has been resolved: tracing/osnoise: Fix crash in timerlat_dump_stack() We have observed kernel panics when using timerlat with stack saving, with the following dmesg output: memcpy: detected buffer overflow: 88 byte write of buffer size 0 WARNING: CPU: 2 PID: 8153 at lib/string_helpers.c:1032 __fortify_report+0x55/0xa0 CPU: 2 UID: 0 PID: 8153 Comm: timerlatu/2 Kdump: loaded Not tainted 6.15.3-200.fc42.x86_64 #1 PREEMPT(lazy) Call Trace: <TASK> ? trace_buffer_lock_reserve+0x2a/0x60 __fortify_panic+0xd/0xf __timerlat_dump_stack.cold+0xd/0xd timerlat_dump_stack.part.0+0x47/0x80 timerlat_fd_read+0x36d/0x390 vfs_read+0xe2/0x390 ? syscall_exit_to_user_mode+0x1d5/0x210 ksys_read+0x73/0xe0 do_syscall_64+0x7b/0x160 ? exc_page_fault+0x7e/0x1a0 entry_SYSCALL_64_after_hwframe+0x76/0x7e __timerlat_dump_stack() constructs the ftrace stack entry like this: struct stack_entry *entry; ... memcpy(&entry->caller, fstack->calls, size); entry->size = fstack->nr_entries; Since commit e7186af7fb26 ("tracing: Add back FORTIFY_SOURCE logic to kernel_stack event structure"), struct stack_entry marks its caller field with __counted_by(size). At the time of the memcpy, entry->size contains garbage from the ringbuffer, which under some circumstances is zero, triggering a kernel panic by buffer overflow. Populate the size field before the memcpy so that the out-of-bounds check knows the correct size. This is analogous to __ftrace_trace_stack().
IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 11.5.0 - 11.5.9 and 12.1.0 - 12.1.3 could allow an authenticated user to cause a denial of service using a specially crafted SQL statement including XML that performs uncontrolled recursion.
In the Linux kernel, the following vulnerability has been resolved: fbdev: omapfb: Add 'plane' value check Function dispc_ovl_setup is not intended to work with the value OMAP_DSS_WB of the enum parameter plane. The value of this parameter is initialized in dss_init_overlays and in the current state of the code it cannot take this value so it's not a real problem. For the purposes of defensive coding it wouldn't be superfluous to check the parameter value, because some functions down the call stack process this value correctly and some not. For example, in dispc_ovl_setup_global_alpha it may lead to buffer overflow. Add check for this value. Found by Linux Verification Center (linuxtesting.org) with SVACE static analysis tool.
IBM Engineering Requirements Management Doors Next 7.0.2, 7.0.3, and 7.1 could allow an authenticated user to cause a denial of service by uploading specially crafted files using uncontrolled recursion.
A flaw was found in systemd. An uncontrolled recursion in systemd-tmpfiles may lead to a denial of service at boot time when too many nested directories are created in /tmp.
A crafted NTFS image with an unallocated bitmap can lead to a endless recursive function call chain (starting from ntfs_attr_pwrite), causing stack consumption in NTFS-3G < 2021.8.22.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `ParseAttrValue`(https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/framework/attr_value_util.cc#L397-L453) can be tricked into stack overflow due to recursion by giving in a specially crafted input. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
In Elasticsearch versions before 7.13.3 and 6.8.17 an uncontrolled recursion vulnerability that could lead to a denial of service attack was identified in the Elasticsearch Grok parser. A user with the ability to submit arbitrary queries to Elasticsearch could create a malicious Grok query that will crash the Elasticsearch node.
A stack overflow via an infinite recursion vulnerability was found in the eepro100 i8255x device emulator of QEMU. This issue occurs while processing controller commands due to a DMA reentry issue. This flaw allows a guest user or process to consume CPU cycles or crash the QEMU process on the host, resulting in a denial of service. The highest threat from this vulnerability is to system availability.
alter.c in SQLite through 3.30.1 allows attackers to trigger infinite recursion via certain types of self-referential views in conjunction with ALTER TABLE statements.
KaTeX is a JavaScript library for TeX math rendering on the web. KaTeX users who render untrusted mathematical expressions could encounter malicious input using `\edef` that causes a near-infinite loop, despite setting `maxExpand` to avoid such loops. This can be used as an availability attack, where e.g. a client rendering another user's KaTeX input will be unable to use the site due to memory overflow, tying up the main thread, or stack overflow. Upgrade to KaTeX v0.16.10 to remove this vulnerability.
KaTeX is a JavaScript library for TeX math rendering on the web. KaTeX users who render untrusted mathematical expressions could encounter malicious input using `\def` or `\newcommand` that causes a near-infinite loop, despite setting `maxExpand` to avoid such loops. KaTeX supports an option named maxExpand which aims to prevent infinitely recursive macros from consuming all available memory and/or triggering a stack overflow error. Unfortunately, support for "Unicode (sub|super)script characters" allows an attacker to bypass this limit. Each sub/superscript group instantiated a separate Parser with its own limit on macro executions, without inheriting the current count of macro executions from its parent. This has been corrected in KaTeX v0.16.10.
Nextcloud Server before 9.0.55 and 10.0.2 suffers from a Denial of Service attack. Due to an error in the application logic an authenticated adversary may trigger an endless recursion in the application leading to a potential Denial of Service.
An issue was discovered in Datalust Seq before 2024.3.13545. An insecure default parsing depth limit allows stack consumption when parsing user-supplied queries containing deeply nested expressions.
In the Linux kernel, the following vulnerability has been resolved: eventpoll: Fix semi-unbounded recursion Ensure that epoll instances can never form a graph deeper than EP_MAX_NESTS+1 links. Currently, ep_loop_check_proc() ensures that the graph is loop-free and does some recursion depth checks, but those recursion depth checks don't limit the depth of the resulting tree for two reasons: - They don't look upwards in the tree. - If there are multiple downwards paths of different lengths, only one of the paths is actually considered for the depth check since commit 28d82dc1c4ed ("epoll: limit paths"). Essentially, the current recursion depth check in ep_loop_check_proc() just serves to prevent it from recursing too deeply while checking for loops. A more thorough check is done in reverse_path_check() after the new graph edge has already been created; this checks, among other things, that no paths going upwards from any non-epoll file with a length of more than 5 edges exist. However, this check does not apply to non-epoll files. As a result, it is possible to recurse to a depth of at least roughly 500, tested on v6.15. (I am unsure if deeper recursion is possible; and this may have changed with commit 8c44dac8add7 ("eventpoll: Fix priority inversion problem").) To fix it: 1. In ep_loop_check_proc(), note the subtree depth of each visited node, and use subtree depths for the total depth calculation even when a subtree has already been visited. 2. Add ep_get_upwards_depth_proc() for similarly determining the maximum depth of an upwards walk. 3. In ep_loop_check(), use these values to limit the total path length between epoll nodes to EP_MAX_NESTS edges.
In the Linux kernel, the following vulnerability has been resolved: crypto: hisilicon/qm - increase the memory of local variables Increase the buffer to prevent stack overflow by fuzz test. The maximum length of the qos configuration buffer is 256 bytes. Currently, the value of the 'val buffer' is only 32 bytes. The sscanf does not check the dest memory length. So the 'val buffer' may stack overflow.
Those using Jettison to parse untrusted XML or JSON data may be vulnerable to Denial of Service attacks (DOS). If the parser is running on user supplied input, an attacker may supply content that causes the parser to crash by Out of memory. This effect may support a denial of service attack.
In the Linux kernel, the following vulnerability has been resolved: powercap: arm_scmi: Remove recursion while parsing zones Powercap zones can be defined as arranged in a hierarchy of trees and when registering a zone with powercap_register_zone(), the kernel powercap subsystem expects this to happen starting from the root zones down to the leaves; on the other side, de-registration by powercap_deregister_zone() must begin from the leaf zones. Available SCMI powercap zones are retrieved dynamically from the platform at probe time and, while any defined hierarchy between the zones is described properly in the zones descriptor, the platform returns the availables zones with no particular well-defined order: as a consequence, the trees possibly composing the hierarchy of zones have to be somehow walked properly to register the retrieved zones from the root. Currently the ARM SCMI Powercap driver walks the zones using a recursive algorithm; this approach, even though correct and tested can lead to kernel stack overflow when processing a returned hierarchy of zones composed by particularly high trees. Avoid possible kernel stack overflow by substituting the recursive approach with an iterative one supported by a dynamically allocated stack-like data structure.