Multiple memory leaks in the iwl_pcie_ctxt_info_gen3_init() function in drivers/net/wireless/intel/iwlwifi/pcie/ctxt-info-gen3.c in the Linux kernel through 5.3.11 allow attackers to cause a denial of service (memory consumption) by triggering iwl_pcie_init_fw_sec() or dma_alloc_coherent() failures, aka CID-0f4f199443fa.
Memory leaks in *create_resource_pool() functions under drivers/gpu/drm/amd/display/dc in the Linux kernel through 5.3.11 allow attackers to cause a denial of service (memory consumption). This affects the dce120_create_resource_pool() function in drivers/gpu/drm/amd/display/dc/dce120/dce120_resource.c, the dce110_create_resource_pool() function in drivers/gpu/drm/amd/display/dc/dce110/dce110_resource.c, the dce100_create_resource_pool() function in drivers/gpu/drm/amd/display/dc/dce100/dce100_resource.c, the dcn10_create_resource_pool() function in drivers/gpu/drm/amd/display/dc/dcn10/dcn10_resource.c, and the dce112_create_resource_pool() function in drivers/gpu/drm/amd/display/dc/dce112/dce112_resource.c, aka CID-104c307147ad.
In the Linux kernel, the following vulnerability has been resolved: pmdomain: mediatek: fix race conditions with genpd If the power domains are registered first with genpd and *after that* the driver attempts to power them on in the probe sequence, then it is possible that a race condition occurs if genpd tries to power them on in the same time. The same is valid for powering them off before unregistering them from genpd. Attempt to fix race conditions by first removing the domains from genpd and *after that* powering down domains. Also first power up the domains and *after that* register them to genpd.
In the Linux kernel, the following vulnerability has been resolved: phy: lynx-28g: serialize concurrent phy_set_mode_ext() calls to shared registers The protocol converter configuration registers PCC8, PCCC, PCCD (implemented by the driver), as well as others, control protocol converters from multiple lanes (each represented as a different struct phy). So, if there are simultaneous calls to phy_set_mode_ext() to lanes sharing the same PCC register (either for the "old" or for the "new" protocol), corruption of the values programmed to hardware is possible, because lynx_28g_rmw() has no locking. Add a spinlock in the struct lynx_28g_priv shared by all lanes, and take the global spinlock from the phy_ops :: set_mode() implementation. There are no other callers which modify PCC registers.
In the Linux kernel, the following vulnerability has been resolved: media: rkisp1: Fix IRQ disable race issue In rkisp1_isp_stop() and rkisp1_csi_disable() the driver masks the interrupts and then apparently assumes that the interrupt handler won't be running, and proceeds in the stop procedure. This is not the case, as the interrupt handler can already be running, which would lead to the ISP being disabled while the interrupt handler handling a captured frame. This brings up two issues: 1) the ISP could be powered off while the interrupt handler is still running and accessing registers, leading to board lockup, and 2) the interrupt handler code and the code that disables the streaming might do things that conflict. It is not clear to me if 2) causes a real issue, but 1) can be seen with a suitable delay (or printk in my case) in the interrupt handler, leading to board lockup.
In the Linux kernel, the following vulnerability has been resolved: mm/sparsemem: fix race in accessing memory_section->usage The below race is observed on a PFN which falls into the device memory region with the system memory configuration where PFN's are such that [ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL]. Since normal zone start and end pfn contains the device memory PFN's as well, the compaction triggered will try on the device memory PFN's too though they end up in NOP(because pfn_to_online_page() returns NULL for ZONE_DEVICE memory sections). When from other core, the section mappings are being removed for the ZONE_DEVICE region, that the PFN in question belongs to, on which compaction is currently being operated is resulting into the kernel crash with CONFIG_SPASEMEM_VMEMAP enabled. The crash logs can be seen at [1]. compact_zone() memunmap_pages ------------- --------------- __pageblock_pfn_to_page ...... (a)pfn_valid(): valid_section()//return true (b)__remove_pages()-> sparse_remove_section()-> section_deactivate(): [Free the array ms->usage and set ms->usage = NULL] pfn_section_valid() [Access ms->usage which is NULL] NOTE: From the above it can be said that the race is reduced to between the pfn_valid()/pfn_section_valid() and the section deactivate with SPASEMEM_VMEMAP enabled. The commit b943f045a9af("mm/sparse: fix kernel crash with pfn_section_valid check") tried to address the same problem by clearing the SECTION_HAS_MEM_MAP with the expectation of valid_section() returns false thus ms->usage is not accessed. Fix this issue by the below steps: a) Clear SECTION_HAS_MEM_MAP before freeing the ->usage. b) RCU protected read side critical section will either return NULL when SECTION_HAS_MEM_MAP is cleared or can successfully access ->usage. c) Free the ->usage with kfree_rcu() and set ms->usage = NULL. No attempt will be made to access ->usage after this as the SECTION_HAS_MEM_MAP is cleared thus valid_section() return false. Thanks to David/Pavan for their inputs on this patch. [1] https://lore.kernel.org/linux-mm/994410bb-89aa-d987-1f50-f514903c55aa@quicinc.com/ On Snapdragon SoC, with the mentioned memory configuration of PFN's as [ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL], we are able to see bunch of issues daily while testing on a device farm. For this particular issue below is the log. Though the below log is not directly pointing to the pfn_section_valid(){ ms->usage;}, when we loaded this dump on T32 lauterbach tool, it is pointing. [ 540.578056] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 540.578068] Mem abort info: [ 540.578070] ESR = 0x0000000096000005 [ 540.578073] EC = 0x25: DABT (current EL), IL = 32 bits [ 540.578077] SET = 0, FnV = 0 [ 540.578080] EA = 0, S1PTW = 0 [ 540.578082] FSC = 0x05: level 1 translation fault [ 540.578085] Data abort info: [ 540.578086] ISV = 0, ISS = 0x00000005 [ 540.578088] CM = 0, WnR = 0 [ 540.579431] pstate: 82400005 (Nzcv daif +PAN -UAO +TCO -DIT -SSBSBTYPE=--) [ 540.579436] pc : __pageblock_pfn_to_page+0x6c/0x14c [ 540.579454] lr : compact_zone+0x994/0x1058 [ 540.579460] sp : ffffffc03579b510 [ 540.579463] x29: ffffffc03579b510 x28: 0000000000235800 x27:000000000000000c [ 540.579470] x26: 0000000000235c00 x25: 0000000000000068 x24:ffffffc03579b640 [ 540.579477] x23: 0000000000000001 x22: ffffffc03579b660 x21:0000000000000000 [ 540.579483] x20: 0000000000235bff x19: ffffffdebf7e3940 x18:ffffffdebf66d140 [ 540.579489] x17: 00000000739ba063 x16: 00000000739ba063 x15:00000000009f4bff [ 540.579495] x14: 0000008000000000 x13: 0000000000000000 x12:0000000000000001 [ 540.579501] x11: 0000000000000000 x10: 0000000000000000 x9 :ffffff897d2cd440 [ 540.579507] x8 : 0000000000000000 x7 : 0000000000000000 x6 :ffffffc03579b5b4 [ 540.579512] x5 : 0000000000027f25 x4 : ffffffc03579b5b8 x3 :0000000000000 ---truncated---
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix racing issue between ufshcd_mcq_abort() and ISR If command timeout happens and cq complete IRQ is raised at the same time, ufshcd_mcq_abort clears lprb->cmd and a NULL pointer deref happens in the ISR. Error log: ufshcd_abort: Device abort task at tag 18 Unable to handle kernel NULL pointer dereference at virtual address 0000000000000108 pc : [0xffffffe27ef867ac] scsi_dma_unmap+0xc/0x44 lr : [0xffffffe27f1b898c] ufshcd_release_scsi_cmd+0x24/0x114
In the Linux kernel, the following vulnerability has been resolved: KVM: s390: vsie: fix race during shadow creation Right now it is possible to see gmap->private being zero in kvm_s390_vsie_gmap_notifier resulting in a crash. This is due to the fact that we add gmap->private == kvm after creation: static int acquire_gmap_shadow(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { [...] gmap = gmap_shadow(vcpu->arch.gmap, asce, edat); if (IS_ERR(gmap)) return PTR_ERR(gmap); gmap->private = vcpu->kvm; Let children inherit the private field of the parent.
In the Linux kernel before 5.0, a memory leak exists in sit_init_net() in net/ipv6/sit.c when register_netdev() fails to register sitn->fb_tunnel_dev, which may cause denial of service, aka CID-07f12b26e21a.
An issue was discovered in the Linux kernel before 5.0.6. There is a memory leak issue when idr_alloc() fails in genl_register_family() in net/netlink/genetlink.c.
An issue was discovered in the Linux kernel before 5.0.9. There is a use-after-free in atalk_proc_exit, related to net/appletalk/atalk_proc.c, net/appletalk/ddp.c, and net/appletalk/sysctl_net_atalk.c.
In the Linux kernel before 5.1.13, there is a memory leak in drivers/scsi/libsas/sas_expander.c when SAS expander discovery fails. This will cause a BUG and denial of service.
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix uninit-value access in __ip_make_skb() KMSAN reported uninit-value access in __ip_make_skb() [1]. __ip_make_skb() tests HDRINCL to know if the skb has icmphdr. However, HDRINCL can cause a race condition. If calling setsockopt(2) with IP_HDRINCL changes HDRINCL while __ip_make_skb() is running, the function will access icmphdr in the skb even if it is not included. This causes the issue reported by KMSAN. Check FLOWI_FLAG_KNOWN_NH on fl4->flowi4_flags instead of testing HDRINCL on the socket. Also, fl4->fl4_icmp_type and fl4->fl4_icmp_code are not initialized. These are union in struct flowi4 and are implicitly initialized by flowi4_init_output(), but we should not rely on specific union layout. Initialize these explicitly in raw_sendmsg(). [1] BUG: KMSAN: uninit-value in __ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481 __ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481 ip_finish_skb include/net/ip.h:243 [inline] ip_push_pending_frames+0x4c/0x5c0 net/ipv4/ip_output.c:1508 raw_sendmsg+0x2381/0x2690 net/ipv4/raw.c:654 inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x274/0x3c0 net/socket.c:745 __sys_sendto+0x62c/0x7b0 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x130/0x200 net/socket.c:2199 do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Uninit was created at: slab_post_alloc_hook mm/slub.c:3804 [inline] slab_alloc_node mm/slub.c:3845 [inline] kmem_cache_alloc_node+0x5f6/0xc50 mm/slub.c:3888 kmalloc_reserve+0x13c/0x4a0 net/core/skbuff.c:577 __alloc_skb+0x35a/0x7c0 net/core/skbuff.c:668 alloc_skb include/linux/skbuff.h:1318 [inline] __ip_append_data+0x49ab/0x68c0 net/ipv4/ip_output.c:1128 ip_append_data+0x1e7/0x260 net/ipv4/ip_output.c:1365 raw_sendmsg+0x22b1/0x2690 net/ipv4/raw.c:648 inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x274/0x3c0 net/socket.c:745 __sys_sendto+0x62c/0x7b0 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x130/0x200 net/socket.c:2199 do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x6d/0x75 CPU: 1 PID: 15709 Comm: syz-executor.7 Not tainted 6.8.0-11567-gb3603fcb79b1 #25 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-1.fc39 04/01/2014
In the Linux kernel, the following vulnerability has been resolved: tracing: Have format file honor EVENT_FILE_FL_FREED When eventfs was introduced, special care had to be done to coordinate the freeing of the file meta data with the files that are exposed to user space. The file meta data would have a ref count that is set when the file is created and would be decremented and freed after the last user that opened the file closed it. When the file meta data was to be freed, it would set a flag (EVENT_FILE_FL_FREED) to denote that the file is freed, and any new references made (like new opens or reads) would fail as it is marked freed. This allowed other meta data to be freed after this flag was set (under the event_mutex). All the files that were dynamically created in the events directory had a pointer to the file meta data and would call event_release() when the last reference to the user space file was closed. This would be the time that it is safe to free the file meta data. A shortcut was made for the "format" file. It's i_private would point to the "call" entry directly and not point to the file's meta data. This is because all format files are the same for the same "call", so it was thought there was no reason to differentiate them. The other files maintain state (like the "enable", "trigger", etc). But this meant if the file were to disappear, the "format" file would be unaware of it. This caused a race that could be trigger via the user_events test (that would create dynamic events and free them), and running a loop that would read the user_events format files: In one console run: # cd tools/testing/selftests/user_events # while true; do ./ftrace_test; done And in another console run: # cd /sys/kernel/tracing/ # while true; do cat events/user_events/__test_event/format; done 2>/dev/null With KASAN memory checking, it would trigger a use-after-free bug report (which was a real bug). This was because the format file was not checking the file's meta data flag "EVENT_FILE_FL_FREED", so it would access the event that the file meta data pointed to after the event was freed. After inspection, there are other locations that were found to not check the EVENT_FILE_FL_FREED flag when accessing the trace_event_file. Add a new helper function: event_file_file() that will make sure that the event_mutex is held, and will return NULL if the trace_event_file has the EVENT_FILE_FL_FREED flag set. Have the first reference of the struct file pointer use event_file_file() and check for NULL. Later uses can still use the event_file_data() helper function if the event_mutex is still held and was not released since the event_file_file() call.
Race condition in some Intel(R) Aptio* V UEFI Firmware Integrator Tools may allow an authenticated user to potentially enable denial of service via local access.
A race problem was found in fs/proc/task_mmu.c in the memory management sub-component in the Linux kernel. This issue may allow a local attacker with user privilege to cause a denial of service.
A use-after-free flaw was found in ndlc_remove in drivers/nfc/st-nci/ndlc.c in the Linux Kernel. This flaw could allow an attacker to crash the system due to a race problem.
A use-after-free flaw was found in io_uring/poll.c in io_poll_check_events in the io_uring subcomponent in the Linux Kernel due to a race condition of poll_refs. This flaw may cause a NULL pointer dereference.
A use-after-free flaw was found in qdisc_graft in net/sched/sch_api.c in the Linux Kernel due to a race problem. This flaw leads to a denial of service issue. If patch ebda44da44f6 ("net: sched: fix race condition in qdisc_graft()") not applied yet, then kernel could be affected.
In the Linux kernel, the following vulnerability has been resolved: sysctl: Fix data races in proc_douintvec_minmax(). A sysctl variable is accessed concurrently, and there is always a chance of data-race. So, all readers and writers need some basic protection to avoid load/store-tearing. This patch changes proc_douintvec_minmax() to use READ_ONCE() and WRITE_ONCE() internally to fix data-races on the sysctl side. For now, proc_douintvec_minmax() itself is tolerant to a data-race, but we still need to add annotations on the other subsystem's side.
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix data-races around sysctl_fib_multipath_hash_fields. While reading sysctl_fib_multipath_hash_fields, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: ip: Fix data-races around sysctl_ip_fwd_update_priority. While reading sysctl_ip_fwd_update_priority, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_probe_interval. While reading sysctl_tcp_probe_interval, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_fastopen_blackhole_timeout. While reading sysctl_tcp_fastopen_blackhole_timeout, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_mtu_probing. While reading sysctl_tcp_mtu_probing, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: cipso: Fix data-races around sysctl. While reading cipso sysctl variables, they can be changed concurrently. So, we need to add READ_ONCE() to avoid data-races.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_slow_start_after_idle. While reading sysctl_tcp_slow_start_after_idle, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix data-races around sysctl_fib_multipath_hash_policy. While reading sysctl_fib_multipath_hash_policy, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix a data-race around sysctl_fib_multipath_use_neigh. While reading sysctl_fib_multipath_use_neigh, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_base_mss. While reading sysctl_tcp_base_mss, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_early_retrans. While reading sysctl_tcp_early_retrans, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: raw: Fix a data-race around sysctl_raw_l3mdev_accept. While reading sysctl_raw_l3mdev_accept, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: ip: Fix a data-race around sysctl_fwmark_reflect. While reading sysctl_fwmark_reflect, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_notsent_lowat. While reading sysctl_tcp_notsent_lowat, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: tcp/dccp: Fix a data-race around sysctl_tcp_fwmark_accept. While reading sysctl_tcp_fwmark_accept, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_thin_linear_timeouts. While reading sysctl_tcp_thin_linear_timeouts, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: nexthop: Fix data-races around nexthop_compat_mode. While reading nexthop_compat_mode, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: i2c: sprd: fix reference leak when pm_runtime_get_sync fails The PM reference count is not expected to be incremented on return in sprd_i2c_master_xfer() and sprd_i2c_remove(). However, pm_runtime_get_sync will increment the PM reference count even failed. Forgetting to putting operation will result in a reference leak here. Replace it with pm_runtime_resume_and_get to keep usage counter balanced.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_ecn_fallback. While reading sysctl_tcp_ecn_fallback, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix a data-race around sysctl_fib_sync_mem. While reading sysctl_fib_sync_mem, it can be changed concurrently. So, we need to add READ_ONCE() to avoid a data-race.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_max_reordering. While reading sysctl_tcp_max_reordering, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_recovery. While reading sysctl_tcp_recovery, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_min_snd_mss. While reading sysctl_tcp_min_snd_mss, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_migrate_req. While reading sysctl_tcp_migrate_req, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: igmp: Fix data-races around sysctl_igmp_llm_reports. While reading sysctl_igmp_llm_reports, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. This test can be packed into a helper, so such changes will be in the follow-up series after net is merged into net-next. if (ipv4_is_local_multicast(pmc->multiaddr) && !READ_ONCE(net->ipv4.sysctl_igmp_llm_reports))
In the Linux kernel, the following vulnerability has been resolved: ice: Fix race condition during interface enslave Commit 5dbbbd01cbba83 ("ice: Avoid RTNL lock when re-creating auxiliary device") changes a process of re-creation of aux device so ice_plug_aux_dev() is called from ice_service_task() context. This unfortunately opens a race window that can result in dead-lock when interface has left LAG and immediately enters LAG again. Reproducer: ``` #!/bin/sh ip link add lag0 type bond mode 1 miimon 100 ip link set lag0 for n in {1..10}; do echo Cycle: $n ip link set ens7f0 master lag0 sleep 1 ip link set ens7f0 nomaster done ``` This results in: [20976.208697] Workqueue: ice ice_service_task [ice] [20976.213422] Call Trace: [20976.215871] __schedule+0x2d1/0x830 [20976.219364] schedule+0x35/0xa0 [20976.222510] schedule_preempt_disabled+0xa/0x10 [20976.227043] __mutex_lock.isra.7+0x310/0x420 [20976.235071] enum_all_gids_of_dev_cb+0x1c/0x100 [ib_core] [20976.251215] ib_enum_roce_netdev+0xa4/0xe0 [ib_core] [20976.256192] ib_cache_setup_one+0x33/0xa0 [ib_core] [20976.261079] ib_register_device+0x40d/0x580 [ib_core] [20976.266139] irdma_ib_register_device+0x129/0x250 [irdma] [20976.281409] irdma_probe+0x2c1/0x360 [irdma] [20976.285691] auxiliary_bus_probe+0x45/0x70 [20976.289790] really_probe+0x1f2/0x480 [20976.298509] driver_probe_device+0x49/0xc0 [20976.302609] bus_for_each_drv+0x79/0xc0 [20976.306448] __device_attach+0xdc/0x160 [20976.310286] bus_probe_device+0x9d/0xb0 [20976.314128] device_add+0x43c/0x890 [20976.321287] __auxiliary_device_add+0x43/0x60 [20976.325644] ice_plug_aux_dev+0xb2/0x100 [ice] [20976.330109] ice_service_task+0xd0c/0xed0 [ice] [20976.342591] process_one_work+0x1a7/0x360 [20976.350536] worker_thread+0x30/0x390 [20976.358128] kthread+0x10a/0x120 [20976.365547] ret_from_fork+0x1f/0x40 ... [20976.438030] task:ip state:D stack: 0 pid:213658 ppid:213627 flags:0x00004084 [20976.446469] Call Trace: [20976.448921] __schedule+0x2d1/0x830 [20976.452414] schedule+0x35/0xa0 [20976.455559] schedule_preempt_disabled+0xa/0x10 [20976.460090] __mutex_lock.isra.7+0x310/0x420 [20976.464364] device_del+0x36/0x3c0 [20976.467772] ice_unplug_aux_dev+0x1a/0x40 [ice] [20976.472313] ice_lag_event_handler+0x2a2/0x520 [ice] [20976.477288] notifier_call_chain+0x47/0x70 [20976.481386] __netdev_upper_dev_link+0x18b/0x280 [20976.489845] bond_enslave+0xe05/0x1790 [bonding] [20976.494475] do_setlink+0x336/0xf50 [20976.502517] __rtnl_newlink+0x529/0x8b0 [20976.543441] rtnl_newlink+0x43/0x60 [20976.546934] rtnetlink_rcv_msg+0x2b1/0x360 [20976.559238] netlink_rcv_skb+0x4c/0x120 [20976.563079] netlink_unicast+0x196/0x230 [20976.567005] netlink_sendmsg+0x204/0x3d0 [20976.570930] sock_sendmsg+0x4c/0x50 [20976.574423] ____sys_sendmsg+0x1eb/0x250 [20976.586807] ___sys_sendmsg+0x7c/0xc0 [20976.606353] __sys_sendmsg+0x57/0xa0 [20976.609930] do_syscall_64+0x5b/0x1a0 [20976.613598] entry_SYSCALL_64_after_hwframe+0x65/0xca 1. Command 'ip link ... set nomaster' causes that ice_plug_aux_dev() is called from ice_service_task() context, aux device is created and associated device->lock is taken. 2. Command 'ip link ... set master...' calls ice's notifier under RTNL lock and that notifier calls ice_unplug_aux_dev(). That function tries to take aux device->lock but this is already taken by ice_plug_aux_dev() in step 1 3. Later ice_plug_aux_dev() tries to take RTNL lock but this is already taken in step 2 4. Dead-lock The patch fixes this issue by following changes: - Bit ICE_FLAG_PLUG_AUX_DEV is kept to be set during ice_plug_aux_dev() call in ice_service_task() - The bit is checked in ice_clear_rdma_cap() and only if it is not set then ice_unplug_aux_dev() is called. If it is set (in other words plugging of aux device was requested and ice_plug_aux_dev() is potentially running) then the function only clears the ---truncated---
In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix a data-race in unix_dgram_peer_wake_me(). unix_dgram_poll() calls unix_dgram_peer_wake_me() without `other`'s lock held and check if its receive queue is full. Here we need to use unix_recvq_full_lockless() instead of unix_recvq_full(), otherwise KCSAN will report a data-race.
In the Linux kernel, the following vulnerability has been resolved: drm/virtio: Fix GEM handle creation UAF Userspace can guess the handle value and try to race GEM object creation with handle close, resulting in a use-after-free if we dereference the object after dropping the handle's reference. For that reason, dropping the handle's reference must be done *after* we are done dereferencing the object.
In the Linux kernel, the following vulnerability has been resolved: ext4: fix race condition between ext4_write and ext4_convert_inline_data Hulk Robot reported a BUG_ON: ================================================================== EXT4-fs error (device loop3): ext4_mb_generate_buddy:805: group 0, block bitmap and bg descriptor inconsistent: 25 vs 31513 free clusters kernel BUG at fs/ext4/ext4_jbd2.c:53! invalid opcode: 0000 [#1] SMP KASAN PTI CPU: 0 PID: 25371 Comm: syz-executor.3 Not tainted 5.10.0+ #1 RIP: 0010:ext4_put_nojournal fs/ext4/ext4_jbd2.c:53 [inline] RIP: 0010:__ext4_journal_stop+0x10e/0x110 fs/ext4/ext4_jbd2.c:116 [...] Call Trace: ext4_write_inline_data_end+0x59a/0x730 fs/ext4/inline.c:795 generic_perform_write+0x279/0x3c0 mm/filemap.c:3344 ext4_buffered_write_iter+0x2e3/0x3d0 fs/ext4/file.c:270 ext4_file_write_iter+0x30a/0x11c0 fs/ext4/file.c:520 do_iter_readv_writev+0x339/0x3c0 fs/read_write.c:732 do_iter_write+0x107/0x430 fs/read_write.c:861 vfs_writev fs/read_write.c:934 [inline] do_pwritev+0x1e5/0x380 fs/read_write.c:1031 [...] ================================================================== Above issue may happen as follows: cpu1 cpu2 __________________________|__________________________ do_pwritev vfs_writev do_iter_write ext4_file_write_iter ext4_buffered_write_iter generic_perform_write ext4_da_write_begin vfs_fallocate ext4_fallocate ext4_convert_inline_data ext4_convert_inline_data_nolock ext4_destroy_inline_data_nolock clear EXT4_STATE_MAY_INLINE_DATA ext4_map_blocks ext4_ext_map_blocks ext4_mb_new_blocks ext4_mb_regular_allocator ext4_mb_good_group_nolock ext4_mb_init_group ext4_mb_init_cache ext4_mb_generate_buddy --> error ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) ext4_restore_inline_data set EXT4_STATE_MAY_INLINE_DATA ext4_block_write_begin ext4_da_write_end ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) ext4_write_inline_data_end handle=NULL ext4_journal_stop(handle) __ext4_journal_stop ext4_put_nojournal(handle) ref_cnt = (unsigned long)handle BUG_ON(ref_cnt == 0) ---> BUG_ON The lock held by ext4_convert_inline_data is xattr_sem, but the lock held by generic_perform_write is i_rwsem. Therefore, the two locks can be concurrent. To solve above issue, we add inode_lock() for ext4_convert_inline_data(). At the same time, move ext4_convert_inline_data() in front of ext4_punch_hole(), remove similar handling from ext4_punch_hole().
In the Linux kernel, the following vulnerability has been resolved: configfs: fix a race in configfs_{,un}register_subsystem() When configfs_register_subsystem() or configfs_unregister_subsystem() is executing link_group() or unlink_group(), it is possible that two processes add or delete list concurrently. Some unfortunate interleavings of them can cause kernel panic. One of cases is: A --> B --> C --> D A <-- B <-- C <-- D delete list_head *B | delete list_head *C --------------------------------|----------------------------------- configfs_unregister_subsystem | configfs_unregister_subsystem unlink_group | unlink_group unlink_obj | unlink_obj list_del_init | list_del_init __list_del_entry | __list_del_entry __list_del | __list_del // next == C | next->prev = prev | | next->prev = prev prev->next = next | | // prev == B | prev->next = next Fix this by adding mutex when calling link_group() or unlink_group(), but parent configfs_subsystem is NULL when config_item is root. So I create a mutex configfs_subsystem_mutex.