Qualitia Active! Mail contains a stack-based buffer overflow vulnerability that allows a remote, unauthenticated attacker to execute arbitrary or trigger a denial-of-service via a specially crafted request.
Apply mitigations per vendor instructions, follow applicable BOD 22-01 guidance for cloud services, or discontinue use of the product if mitigations are unavailable.
KEPServerEX: v6.0 to v6.9, ThingWorx Kepware Server: v6.8 and v6.9, ThingWorx Industrial Connectivity: All versions, OPC-Aggregator: All versions, Rockwell Automation KEPServer Enterprise, GE Digital Industrial Gateway Server: v7.68.804 and v7.66, Software Toolbox TOP Server: All 6.x versions are vulnerable to a stack-based buffer overflow. Opening a specifically crafted OPC UA message could allow an attacker to crash the server and remotely execute code.
A stack-based buffer overflow vulnerability exists in the confsrv set_port_fwd_rule functionality of TCL LinkHub Mesh Wifi MS1G_00_01.00_14. A specially-crafted network packet can lead to stack-based buffer overflow. An attacker can send a malicious packet to trigger this vulnerability.
TOTOLINK X2000R Gh v1.0.0-B20230221.0948.web was discovered to contain a stack overflow via the function formMultiAP.
Stack overflow in PJSUA API when calling pjsua_playlist_create. An attacker-controlled 'file_names' argument may cause a buffer overflow since it is copied to a fixed-size stack buffer without any size validation.
libglxproto.c in OpenGL libglvnd bb06db5a was discovered to contain a segmentation violation via the function glXGetDrawableScreen(). NOTE: this is disputed because there are no common situations in which users require uninterrupted operation with an attacker-controller server.
The affected product is vulnerable to three stack-based buffer overflows, which may allow an unauthenticated attacker to remotely execute arbitrary code on the IP150 (firmware versions 5.02.09).
TOTOLINK X2000R Gh v1.0.0-B20230221.0948.web was discovered to contain a stack overflow via the function formTcpipSetup.
A stack-based buffer overflow vulnerability exists in NI System Configuration that could result in information disclosure and/or arbitrary code execution. Successful exploitation requires that an attacker can provide a specially crafted response. This affects NI System Configuration 2023 Q3 and all previous versions.
499ES EtherNet/IP (ENIP) Adaptor Source Code is vulnerable to a stack-based buffer overflow, which may allow an attacker to send a specially crafted packet that may result in a denial-of-service condition or code execution.
The digest generation function of NHIServiSignAdapter has not been verified for parameter’s length, which leads to a stack overflow loophole. Remote attackers can use the leak to execute code without privilege.
Tenda AC10U v1.0 US_AC10UV1.0RTL_V15.03.06.49_multi_TDE01 was discovered to contain a stack overflow via the deviceId parameter in the addWifiMacFilter function.
Tenda AC10U v1.0 US_AC10UV1.0RTL_V15.03.06.49_multi_TDE01 was discovered to contain a stack overflow via the schedEndTime parameter in the setSchedWifi function.
D-Link DIR-816 A2 v1.10CNB05 was discovered to contain a stack overflow via parameter removeRuleList in form2IPQoSTcDel.
Stack overflow in PJSUA API when calling pjsua_recorder_create. An attacker-controlled 'filename' argument may cause a buffer overflow since it is copied to a fixed-size stack buffer without any size validation.
A vulnerability in the web-based management interface of Cisco Small Business RV110W, RV130, RV130W, and RV215W Routers could allow an unauthenticated, remote attacker to execute arbitrary code or cause an affected device to restart unexpectedly, resulting in a denial of service (DoS) condition. This vulnerability is due to insufficient user input validation of incoming HTTP packets. An attacker could exploit this vulnerability by sending a crafted request to the web-based management interface. A successful exploit could allow the attacker to execute arbitrary commands on an affected device using root-level privileges. Cisco has not released software updates that address this vulnerability.
Multiple vulnerabilities in Cisco Small Business RV160, RV260, RV340, and RV345 Series Routers could allow an attacker to do any of the following: Execute arbitrary code Elevate privileges Execute arbitrary commands Bypass authentication and authorization protections Fetch and run unsigned software Cause denial of service (DoS) For more information about these vulnerabilities, see the Details section of this advisory.
Tenda AC10 version US_AC10V4.0si_V16.03.10.13_cn was discovered to contain a stack overflow via the firewallEn parameter in the function SetFirewallCfg.
In Grandstream GSD3710 in its 1.0.11.13 version, it's possible to overflow the stack since it doesn't check the param length before using the sscanf instruction. Because of that, an attacker could create a socket and connect with a remote IP:port by opening a shell and getting full access to the system. The exploit affects daemons dbmng and logsrv that are running on ports 8000 and 8001 by default.
Multiple vulnerabilities in Cisco Small Business RV160, RV260, RV340, and RV345 Series Routers could allow an attacker to do any of the following: Execute arbitrary code Elevate privileges Execute arbitrary commands Bypass authentication and authorization protections Fetch and run unsigned software Cause denial of service (DoS) For more information about these vulnerabilities, see the Details section of this advisory.
D-Link DIR-816 A2 v1.10CNB05 was discovered to contain a stack overflow via parameter flag_5G in showMACfilterMAC.
Multiple vulnerabilities in Cisco Small Business RV160, RV260, RV340, and RV345 Series Routers could allow an attacker to do any of the following: Execute arbitrary code Elevate privileges Execute arbitrary commands Bypass authentication and authorization protections Fetch and run unsigned software Cause denial of service (DoS) For more information about these vulnerabilities, see the Details section of this advisory.
Stack overflow in PJSUA API when calling pjsua_player_create. An attacker-controlled 'filename' argument may cause a buffer overflow since it is copied to a fixed-size stack buffer without any size validation.
This vulnerability allows remote attackers to execute arbitrary code on affected installations of Microhard Bullet-LTE prior to v1.2.0-r1112. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of authentication headers. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-10596.
A stack overflow vulnerability in Facebook Hermes 'builtin apply' prior to commit 86543ac47e59c522976b5632b8bf9a2a4583c7d2 (https://github.com/facebook/hermes/commit/86543ac47e59c522976b5632b8bf9a2a4583c7d2) allows attackers to potentially execute arbitrary code via crafted JavaScript. Note that this is only exploitable if the application using Hermes permits evaluation of untrusted JavaScript. Hence, most React Native applications are not affected.
Stack-based Buffer Overflow vulnerability in the ONVIF server component of Victure PC420 smart camera allows an attacker to execute remote code on the target device. This issue affects: Victure PC420 firmware version 1.2.2 and prior versions.
A malicious attacker could exploit the interface of the Fieldcomm Group HART-IP (release 1.0.0.0) by constructing messages with sufficiently large payloads to overflow the internal buffer and crash the device, or obtain control of the device.
This vulnerability allows remote attackers to execute arbitrary code on affected installations of NETGEAR R6400, R6700, R7000, R7850, R7900, R8000, RS400, and XR300 routers with firmware 1.0.4.84_10.0.58. Authentication is not required to exploit this vulnerability. The specific flaw exists within the check_ra service. A crafted raePolicyVersion in a RAE_Policy.json file can trigger an overflow of a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-9852.
Tenda AC10U v1.0 US_AC10UV1.0RTL_V15.03.06.49_multi_TDE01 was discovered to contain a stack overflow via the timeZone parameter in the fromSetSysTime function.
Malicious operation of the crafted web browser cookie may cause a stack-based buffer overflow in the system web server on the EDR-G902 and EDR-G903 Series Routers (versions prior to 5.4).
Tenda AC10U v1.0 US_AC10UV1.0RTL_V15.03.06.49_multi_TDE01 was discovered to contain multiple stack overflows in the formSetMacFilterCfg function via the macFilterType and deviceList parameters.
Zavio CF7500, CF7300, CF7201, CF7501, CB3211, CB3212, CB5220, CB6231, B8520, B8220, and CD321 IP Cameras with firmware version M2.1.6.05 are vulnerable to multiple instances of stack-based overflows. During the processing and parsing of certain fields in XML elements from incoming network requests, the product does not sufficiently check or validate allocated buffer size. This may lead to remote code execution.
WebAccess Node Version 8.4.4 and prior is vulnerable to a stack-based buffer overflow, which may allow an attacker to remotely execute arbitrary code.
Tenda AC10U v1.0 US_AC10UV1.0RTL_V15.03.06.49_multi_TDE01 was discovered to contain a stack overflow via the mac parameter in the GetParentControlInfo function.
Advantech WebAccess Node, Version 8.4.4 and prior, Version 9.0.0. Multiple stack-based buffer overflow vulnerabilities exist caused by a lack of proper validation of the length of user-supplied data, which may allow remote code execution.
Multiple stack-based buffer overflow vulnerabilities [CWE-121] in the proxy daemon of FortiWeb 5.x all versions, 6.0.7 and below, 6.1.2 and below, 6.2.6 and below, 6.3.16 and below, 6.4 all versions may allow an unauthenticated remote attacker to achieve arbitrary code execution via specifically crafted HTTP requests.
Tenda AC10U v1.0 US_AC10UV1.0RTL_V15.03.06.49_multi_TDE01 was discovered to contain a stack overflow via the domain parameter in the add_white_node function.
A Stack-Based Buffer Overflow issue was discovered in Schneider Electric Wonderware ArchestrA Logger, versions 2017.426.2307.1 and prior. The stack-based buffer overflow vulnerability has been identified, which may allow a remote attacker to execute arbitrary code in the context of a highly privileged account.
Zavio CF7500, CF7300, CF7201, CF7501, CB3211, CB3212, CB5220, CB6231, B8520, B8220, and CD321 IP Cameras with firmware version M2.1.6.05 are vulnerable to multiple instances of stack-based overflows. While parsing certain XML elements from incoming network requests, the product does not sufficiently check or validate allocated buffer size. This may lead to remote code execution.
A vulnerability classified as critical has been found in D-Link DCS-5020L 1.01_B2. This affects the function websReadEvent of the file /rame/ptdc.cgi. The manipulation of the argument Authorization leads to stack-based buffer overflow. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. This vulnerability only affects products that are no longer supported by the maintainer.
Mitsubishi E-Designer, Version 7.52 Build 344 contains six code sections which may be exploited to overwrite the stack. This can result in arbitrary code execution, compromised data integrity, denial of service, and system crash.
Tenda AC10U v1.0 US_AC10UV1.0RTL_V15.03.06.49_multi_TDE01 was discovered to contain a stack overflow via the list parameter in the fromSetIpMacBind function.
D-Link DIR-816 A2 v1.10CNB05 was discovered to contain a stack overflow via parameter macCloneMac in setMAC.
A vulnerability was found in D-Link DCS-932L 2.18.01. It has been classified as critical. This affects the function SubUPnPCSInit of the file /sbin/udev. The manipulation of the argument CameraName leads to stack-based buffer overflow. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. This vulnerability only affects products that are no longer supported by the maintainer.
A stack-based buffer overflow vulnerability exists in the Cloud API functionality of Tenda AC6 V5.0 V02.03.01.110. A specially crafted HTTP response can lead to arbitrary code execution. An attacker can send an HTTP response to trigger this vulnerability.
A vulnerability was found in D-Link DCS-932L 2.18.01. It has been declared as critical. This vulnerability affects the function isUCPCameraNameChanged of the file /sbin/ucp. The manipulation of the argument CameraName leads to stack-based buffer overflow. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. This vulnerability only affects products that are no longer supported by the maintainer.
A vulnerability was found in D-Link DCS-932L 2.18.01 and classified as critical. Affected by this issue is the function sub_404780 of the file /bin/gpio. The manipulation of the argument CameraName leads to stack-based buffer overflow. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. This vulnerability only affects products that are no longer supported by the maintainer.
A missing patch for a stack-based buffer overflow in findTable() was found in Red Hat version of liblouis before 2.5.4. An attacker could cause a denial of service condition or potentially even arbitrary code execution.
plugins/preauth/pkinit/pkinit_crypto_openssl.c in MIT Kerberos 5 (aka krb5) through 1.15.2 mishandles Distinguished Name (DN) fields, which allows remote attackers to execute arbitrary code or cause a denial of service (buffer overflow and application crash) in situations involving untrusted X.509 data, related to the get_matching_data and X509_NAME_oneline_ex functions. NOTE: this has security relevance only in use cases outside of the MIT Kerberos distribution, e.g., the use of get_matching_data in KDC certauth plugin code that is specific to Red Hat.
D-LINK DWL-6610 FW_v_4.3.0.8B003C was discovered to contain a stack overflow vulnerability in the function update_users.
A stack-based buffer overflow vulnerability was found in NBD server implementation in qemu before 2.11 allowing a client to request an export name of size up to 4096 bytes, which in fact should be limited to 256 bytes, causing an out-of-bounds stack write in the qemu process. If NBD server requires TLS, the attacker cannot trigger the buffer overflow without first successfully negotiating TLS.