An exploitable stack buffer overflow vulnerability vulnerability exists in the iocheckd service ‘I/O-Check’ functionality of WAGO PFC 200 Firmware version 03.02.02(14). An attacker can send a specially crafted packet to trigger the parsing of this cache file.The destination buffer sp+0x40 is overflowed with the call to sprintf() for any gateway values that are greater than 512-len(‘/etc/config-tools/config_default_gateway number=0 state=enabled value=‘) in length. A gateway value of length 0x7e2 will cause the service to crash.
An exploitable stack buffer overflow vulnerability vulnerability exists in the iocheckd service ‘I/O-Check’ functionality of WAGO PFC 200 Firmware version 03.02.02(14). An attacker can send a specially crafted packet to trigger the parsing of this cache file.The destination buffer sp+0x440 is overflowed with the call to sprintf() for any type values that are greater than 1024-len(‘/etc/config-tools/config_interfaces interface=X1 state=enabled config-type=‘) in length. A type value of length 0x3d9 will cause the service to crash.
An exploitable stack buffer overflow vulnerability vulnerability exists in the iocheckd service "I/O-Check" functionality of WAGO PFC 200. An attacker can send a specially crafted packet to trigger the parsing of this cache file.At 0x1eb9c the extracted interface element name from the xml file is used as an argument to /etc/config-tools/config_interfaces interface=<contents of interface element> using sprintf(). The destination buffer sp+0x40 is overflowed with the call to sprintf() for any interface values that are greater than 512-len("/etc/config-tools/config_interfaces interface=") in length. Later, at 0x1ea08 strcpy() is used to copy the contents of the stack buffer that was overflowed sp+0x40 into sp+0x440. The buffer sp+0x440 is immediately adjacent to sp+0x40 on the stack. Therefore, there is no NULL termination on the buffer sp+0x40 since it overflowed into sp+0x440. The strcpy() will result in invalid memory access. An interface value of length 0x3c4 will cause the service to crash.
An exploitable stack buffer overflow vulnerability exists in the iocheckd service ‘I/O-Check’ functionality of WAGO PFC 200 version 03.02.02(14). A specially crafted XML cache file written to a specific location on the device can cause a stack buffer overflow, resulting in code execution. An attacker can send a specially crafted packet to trigger the parsing of this cache file.
An exploitable stack buffer overflow vulnerability exists in the iocheckd service ''I/O-Check'' functionality of WAGO PFC200 Firmware version 03.01.07(13), WAGO PFC200 Firmware version 03.00.39(12) and WAGO PFC100 Firmware version 03.00.39(12). A specially crafted set of packets can cause a stack buffer overflow, resulting in code execution. An attacker can send unauthenticated packets to trigger this vulnerability.
An exploitable stack buffer overflow vulnerability vulnerability exists in the iocheckd service ‘I/O-Check’ functionality of WAGO PFC 200 Firmware version 03.02.02(14). An attacker can send a specially crafted packet to trigger the parsing of this cache file.
An exploitable heap buffer overflow vulnerability exists in the iocheckd service I/O-Check functionality of WAGO PFC200 Firmware version 03.01.07(13), WAGO PFC200 Firmware version 03.00.39(12), and WAGO PFC100 Firmware version 03.00.39(12). A specially crafted set of packets can cause a heap buffer overflow, potentially resulting in code execution. An attacker can send unauthenticated packets to trigger this vulnerability.
An exploitable stack buffer overflow vulnerability vulnerability exists in the iocheckd service ‘I/O-Check’ functionality of WAGO PFC 200 Firmware version 03.02.02(14). An attacker can send a specially crafted packet to trigger the parsing of this cache file. The destination buffer sp+0x440 is overflowed with the call to sprintf() for any ip values that are greater than 1024-len(‘/etc/config-tools/config_interfaces interface=X1 state=enabled ip-address=‘) in length. A ip value of length 0x3da will cause the service to crash.
An exploitable stack buffer overflow vulnerability vulnerability exists in the iocheckd service ‘I/O-Check’ functionality of WAGO PFC 200 Firmware version 03.02.02(14). A specially crafted XML cache file written to a specific location on the device can cause a stack buffer overflow, resulting in code execution. An attacker can send a specially crafted packet to trigger the parsing of this cache file. The destination buffer sp+0x440 is overflowed with the call to sprintf() for any subnetmask values that are greater than 1024-len(‘/etc/config-tools/config_interfaces interface=X1 state=enabled subnet-mask=‘) in length. A subnetmask value of length 0x3d9 will cause the service to crash.
An exploitable stack buffer overflow vulnerability exists in the command line utility getcouplerdetails of WAGO PFC200 Firmware versions 03.01.07(13) and 03.00.39(12), and WAGO PFC100 Firmware version 03.00.39(12). A specially crafted set of packets sent to the iocheckd service "I/O-Check" can cause a stack buffer overflow in the sub-process getcouplerdetails, resulting in code execution. An attacker can send unauthenticated packets to trigger this vulnerability.
An exploitable heap buffer overflow vulnerability exists in the iocheckd service "I/O-Check" functionality of WAGO PFC200 Firmware versions 03.01.07(13) and 03.00.39(12), and WAGO PFC100 Firmware version 03.00.39(12). A specially crafted set of packets can cause a heap buffer overflow, potentially resulting in code execution. An attacker can send unauthenticated packets to trigger this vulnerability.
An exploitable heap buffer overflow vulnerability exists in the iocheckd service ''I/O-Chec'' functionality of WAGO PFC 200 Firmware version 03.01.07(13) and 03.00.39(12), and WAGO PFC100 Firmware version 03.00.39(12). A specially crafted set of packets can cause a heap buffer overflow, potentially resulting in code execution. An attacker can send unauthenticated packets to trigger this vulnerability.
An exploitable stack buffer overflow vulnerability vulnerability exists in the iocheckd service ‘I/O-Check’ functionality of WAGO PFC 200 Firmware version 03.02.02(14). An attacker can send a specially crafted packet to trigger the parsing of this cache file. The destination buffer sp+0x440 is overflowed with the call to sprintf() for any hostname values that are greater than 1024-len(‘/etc/config-tools/change_hostname hostname=‘) in length. A hostname value of length 0x3fd will cause the service to crash.
An exploitable stack buffer overflow vulnerability vulnerability exists in the iocheckd service "I/O-Check" functionality of WAGO PFC 200. An attacker can send a specially crafted packet to trigger the parsing of this cache file. At 0x1ea28 the extracted state value from the xml file is used as an argument to /etc/config-tools/config_interfaces interface=X1 state=<contents of state node> using sprintf(). The destination buffer sp+0x40 is overflowed with the call to sprintf() for any state values that are greater than 512-len("/etc/config-tools/config_interfaces interface=X1 state=") in length. Later, at 0x1ea08 strcpy() is used to copy the contents of the stack buffer that was overflowed sp+0x40 into sp+0x440. The buffer sp+0x440 is immediately adjacent to sp+0x40 on the stack. Therefore, there is no NULL termination on the buffer sp+0x40 since it overflowed into sp+0x440. The strcpy() will result in invalid memory access. An state value of length 0x3c9 will cause the service to crash.
Crafted web server requests may cause a heap-based buffer overflow and could therefore trigger a denial-of- service condition due to a crash in the CODESYS V2 web server prior to V1.1.9.22.
In WAGO I/O-Check Service in multiple products an attacker can send a specially crafted packet containing OS commands to crash the diagnostic tool and write memory.
CODESYS V2 runtime system SP before 2.4.7.55 has a Heap-based Buffer Overflow.
CODESYS V2 Web-Server before 1.1.9.20 has a Stack-based Buffer Overflow.
CODESYS V2 runtime system SP before 2.4.7.55 has a Stack-based Buffer Overflow.
CODESYS V2 Web-Server before 1.1.9.20 has an Out-of-bounds Write.
In the Linux kernel, the following vulnerability has been resolved: vmxnet3: Fix packet corruption in vmxnet3_xdp_xmit_frame Andrew and Nikolay reported connectivity issues with Cilium's service load-balancing in case of vmxnet3. If a BPF program for native XDP adds an encapsulation header such as IPIP and transmits the packet out the same interface, then in case of vmxnet3 a corrupted packet is being sent and subsequently dropped on the path. vmxnet3_xdp_xmit_frame() which is called e.g. via vmxnet3_run_xdp() through vmxnet3_xdp_xmit_back() calculates an incorrect DMA address: page = virt_to_page(xdpf->data); tbi->dma_addr = page_pool_get_dma_addr(page) + VMXNET3_XDP_HEADROOM; dma_sync_single_for_device(&adapter->pdev->dev, tbi->dma_addr, buf_size, DMA_TO_DEVICE); The above assumes a fixed offset (VMXNET3_XDP_HEADROOM), but the XDP BPF program could have moved xdp->data. While the passed buf_size is correct (xdpf->len), the dma_addr needs to have a dynamic offset which can be calculated as xdpf->data - (void *)xdpf, that is, xdp->data - xdp->data_hard_start.
libjxl b02d6b9, as used in libvips 8.11 through 8.11.2 and other products, has an out-of-bounds write in jxl::ModularFrameDecoder::DecodeGroup (called from jxl::FrameDecoder::ProcessACGroup and jxl::ThreadPool::RunCallState<jxl::FrameDecoder::ProcessSections).
GPAC 2.3-DEV-rev605-gfc9e29089-master contains a SEGV in gpac/MP4Box in gf_media_change_pl /afltest/gpac/src/media_tools/isom_tools.c:3293:42.
Stack-based buffer overflow in the vrend_decode_set_framebuffer_state function in vrend_decode.c in virglrenderer before 926b9b3460a48f6454d8bbe9e44313d86a65447f, as used in Quick Emulator (QEMU), allows a local guest users to cause a denial of service (application crash) via the "nr_cbufs" argument.
GPAC 2.3-DEV-rev605-gfc9e29089-master contains a SEGV in gpac/MP4Box in gf_isom_find_od_id_for_track /afltest/gpac/src/isomedia/media_odf.c:522:14.
A vulnerability was found in Performance Co-Pilot (PCP). This flaw allows an attacker to send specially crafted data to the system, which could cause the program to misbehave or crash.
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: cmd-db: Map shared memory as WC, not WB Linux does not write into cmd-db region. This region of memory is write protected by XPU. XPU may sometime falsely detect clean cache eviction as "write" into the write protected region leading to secure interrupt which causes an endless loop somewhere in Trust Zone. The only reason it is working right now is because Qualcomm Hypervisor maps the same region as Non-Cacheable memory in Stage 2 translation tables. The issue manifests if we want to use another hypervisor (like Xen or KVM), which does not know anything about those specific mappings. Changing the mapping of cmd-db memory from MEMREMAP_WB to MEMREMAP_WT/WC removes dependency on correct mappings in Stage 2 tables. This patch fixes the issue by updating the mapping to MEMREMAP_WC. I tested this on SA8155P with Xen.
Insufficient input validation during parsing of the System Management Mode (SMM) binary may allow a maliciously crafted SMM executable binary to corrupt Dynamic Root of Trust for Measurement (DRTM) user application memory that may result in a potential denial of service.
In the Linux kernel, the following vulnerability has been resolved: erofs: fix out-of-bound access when z_erofs_gbuf_growsize() partially fails If z_erofs_gbuf_growsize() partially fails on a global buffer due to memory allocation failure or fault injection (as reported by syzbot [1]), new pages need to be freed by comparing to the existing pages to avoid memory leaks. However, the old gbuf->pages[] array may not be large enough, which can lead to null-ptr-deref or out-of-bound access. Fix this by checking against gbuf->nrpages in advance. [1] https://lore.kernel.org/r/000000000000f7b96e062018c6e3@google.com
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix a kernel verifier crash in stacksafe() Daniel Hodges reported a kernel verifier crash when playing with sched-ext. Further investigation shows that the crash is due to invalid memory access in stacksafe(). More specifically, it is the following code: if (exact != NOT_EXACT && old->stack[spi].slot_type[i % BPF_REG_SIZE] != cur->stack[spi].slot_type[i % BPF_REG_SIZE]) return false; The 'i' iterates old->allocated_stack. If cur->allocated_stack < old->allocated_stack the out-of-bound access will happen. To fix the issue add 'i >= cur->allocated_stack' check such that if the condition is true, stacksafe() should fail. Otherwise, cur->stack[spi].slot_type[i % BPF_REG_SIZE] memory access is legal.
In the Linux kernel, the following vulnerability has been resolved: mptcp: fix data stream corruption Maxim reported several issues when forcing a TCP transparent proxy to use the MPTCP protocol for the inbound connections. He also provided a clean reproducer. The problem boils down to 'mptcp_frag_can_collapse_to()' assuming that only MPTCP will use the given page_frag. If others - e.g. the plain TCP protocol - allocate page fragments, we can end-up re-using already allocated memory for mptcp_data_frag. Fix the issue ensuring that the to-be-expanded data fragment is located at the current page frag end. v1 -> v2: - added missing fixes tag (Mat)
In the Linux kernel, the following vulnerability has been resolved: fix bitmap corruption on close_range() with CLOSE_RANGE_UNSHARE copy_fd_bitmaps(new, old, count) is expected to copy the first count/BITS_PER_LONG bits from old->full_fds_bits[] and fill the rest with zeroes. What it does is copying enough words (BITS_TO_LONGS(count/BITS_PER_LONG)), then memsets the rest. That works fine, *if* all bits past the cutoff point are clear. Otherwise we are risking garbage from the last word we'd copied. For most of the callers that is true - expand_fdtable() has count equal to old->max_fds, so there's no open descriptors past count, let alone fully occupied words in ->open_fds[], which is what bits in ->full_fds_bits[] correspond to. The other caller (dup_fd()) passes sane_fdtable_size(old_fdt, max_fds), which is the smallest multiple of BITS_PER_LONG that covers all opened descriptors below max_fds. In the common case (copying on fork()) max_fds is ~0U, so all opened descriptors will be below it and we are fine, by the same reasons why the call in expand_fdtable() is safe. Unfortunately, there is a case where max_fds is less than that and where we might, indeed, end up with junk in ->full_fds_bits[] - close_range(from, to, CLOSE_RANGE_UNSHARE) with * descriptor table being currently shared * 'to' being above the current capacity of descriptor table * 'from' being just under some chunk of opened descriptors. In that case we end up with observably wrong behaviour - e.g. spawn a child with CLONE_FILES, get all descriptors in range 0..127 open, then close_range(64, ~0U, CLOSE_RANGE_UNSHARE) and watch dup(0) ending up with descriptor #128, despite #64 being observably not open. The minimally invasive fix would be to deal with that in dup_fd(). If this proves to add measurable overhead, we can go that way, but let's try to fix copy_fd_bitmaps() first. * new helper: bitmap_copy_and_expand(to, from, bits_to_copy, size). * make copy_fd_bitmaps() take the bitmap size in words, rather than bits; it's 'count' argument is always a multiple of BITS_PER_LONG, so we are not losing any information, and that way we can use the same helper for all three bitmaps - compiler will see that count is a multiple of BITS_PER_LONG for the large ones, so it'll generate plain memcpy()+memset(). Reproducer added to tools/testing/selftests/core/close_range_test.c
Eximious Logo Designer 3.82 has a User Mode Write AV starting at ExiVectorRender!StrokeText_Blend+0x00000000000003a7.
PEM module of Huawei DP300 V500R002C00; IPS Module V500R001C00; V500R001C30; NGFW Module V500R001C00; V500R002C00; NIP6300 V500R001C00; V500R001C30; NIP6600 V500R001C00; V500R001C30; RP200 V500R002C00; V600R006C00; S12700 V200R007C00; V200R007C01; V200R008C00; V200R009C00; V200R010C00; S1700 V200R006C10; V200R009C00; V200R010C00; S2700 V200R006C10; V200R007C00; V200R008C00; V200R009C00; V200R010C00; S5700 V200R006C00; V200R007C00; V200R008C00; V200R009C00; V200R010C00; S6700 V200R008C00; V200R009C00; V200R010C00; S7700 V200R007C00; V200R008C00; V200R009C00; V200R010C00; S9700 V200R007C00; V200R007C01; V200R008C00; V200R009C00; V200R010C00; Secospace USG6300 V500R001C00; V500R001C30; Secospace USG6500 V500R001C00; V500R001C30; Secospace USG6600 V500R001C00; V500R001C30S; TE30 V100R001C02; V100R001C10; V500R002C00; V600R006C00; TE40 V500R002C00; V600R006C00; TE50 V500R002C00; V600R006C00; TE60 V100R001C01; V100R001C10; V500R002C00; V600R006C00; TP3106 V100R002C00; TP3206 V100R002C00; V100R002C10; USG9500 V500R001C00; V500R001C30; ViewPoint 9030 V100R011C02; V100R011C03 has an Out-of-Bounds memory access vulnerability due to insufficient verification. An authenticated local attacker can make processing crash by a malicious certificate. The attacker can exploit this vulnerability to cause a denial of service.
In the Linux kernel, the following vulnerability has been resolved: igb: cope with large MAX_SKB_FRAGS Sabrina reports that the igb driver does not cope well with large MAX_SKB_FRAG values: setting MAX_SKB_FRAG to 45 causes payload corruption on TX. An easy reproducer is to run ssh to connect to the machine. With MAX_SKB_FRAGS=17 it works, with MAX_SKB_FRAGS=45 it fails. This has been reported originally in https://bugzilla.redhat.com/show_bug.cgi?id=2265320 The root cause of the issue is that the driver does not take into account properly the (possibly large) shared info size when selecting the ring layout, and will try to fit two packets inside the same 4K page even when the 1st fraglist will trump over the 2nd head. Address the issue by checking if 2K buffers are insufficient.
In the Linux kernel, the following vulnerability has been resolved: mm/vmalloc: fix page mapping if vm_area_alloc_pages() with high order fallback to order 0 The __vmap_pages_range_noflush() assumes its argument pages** contains pages with the same page shift. However, since commit e9c3cda4d86e ("mm, vmalloc: fix high order __GFP_NOFAIL allocations"), if gfp_flags includes __GFP_NOFAIL with high order in vm_area_alloc_pages() and page allocation failed for high order, the pages** may contain two different page shifts (high order and order-0). This could lead __vmap_pages_range_noflush() to perform incorrect mappings, potentially resulting in memory corruption. Users might encounter this as follows (vmap_allow_huge = true, 2M is for PMD_SIZE): kvmalloc(2M, __GFP_NOFAIL|GFP_X) __vmalloc_node_range_noprof(vm_flags=VM_ALLOW_HUGE_VMAP) vm_area_alloc_pages(order=9) ---> order-9 allocation failed and fallback to order-0 vmap_pages_range() vmap_pages_range_noflush() __vmap_pages_range_noflush(page_shift = 21) ----> wrong mapping happens We can remove the fallback code because if a high-order allocation fails, __vmalloc_node_range_noprof() will retry with order-0. Therefore, it is unnecessary to fallback to order-0 here. Therefore, fix this by removing the fallback code.
GPAC 2.3-DEV-rev605-gfc9e29089-master contains a heap-buffer-overflow in ffdmx_parse_side_data /afltest/gpac/src/filters/ff_dmx.c:202:14 in gpac/MP4Box.
In /SM8250_Q_Master/android/vendor/oppo_charger/oppo/charger_ic/oppo_da9313.c, failure to check the parameter buf in the function proc_work_mode_write in proc_work_mode_write causes a vulnerability.
In the Linux kernel, the following vulnerability has been resolved: ext4: fix slab-out-of-bounds in ext4_mb_find_good_group_avg_frag_lists() We can trigger a slab-out-of-bounds with the following commands: mkfs.ext4 -F /dev/$disk 10G mount /dev/$disk /tmp/test echo 2147483647 > /sys/fs/ext4/$disk/mb_group_prealloc echo test > /tmp/test/file && sync ================================================================== BUG: KASAN: slab-out-of-bounds in ext4_mb_find_good_group_avg_frag_lists+0x8a/0x200 [ext4] Read of size 8 at addr ffff888121b9d0f0 by task kworker/u2:0/11 CPU: 0 PID: 11 Comm: kworker/u2:0 Tainted: GL 6.7.0-next-20240118 #521 Call Trace: dump_stack_lvl+0x2c/0x50 kasan_report+0xb6/0xf0 ext4_mb_find_good_group_avg_frag_lists+0x8a/0x200 [ext4] ext4_mb_regular_allocator+0x19e9/0x2370 [ext4] ext4_mb_new_blocks+0x88a/0x1370 [ext4] ext4_ext_map_blocks+0x14f7/0x2390 [ext4] ext4_map_blocks+0x569/0xea0 [ext4] ext4_do_writepages+0x10f6/0x1bc0 [ext4] [...] ================================================================== The flow of issue triggering is as follows: // Set s_mb_group_prealloc to 2147483647 via sysfs ext4_mb_new_blocks ext4_mb_normalize_request ext4_mb_normalize_group_request ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc ext4_mb_regular_allocator ext4_mb_choose_next_group ext4_mb_choose_next_group_best_avail mb_avg_fragment_size_order order = fls(len) - 2 = 29 ext4_mb_find_good_group_avg_frag_lists frag_list = &sbi->s_mb_avg_fragment_size[order] if (list_empty(frag_list)) // Trigger SOOB! At 4k block size, the length of the s_mb_avg_fragment_size list is 14, but an oversized s_mb_group_prealloc is set, causing slab-out-of-bounds to be triggered by an attempt to access an element at index 29. Add a new attr_id attr_clusters_in_group with values in the range [0, sbi->s_clusters_per_group] and declare mb_group_prealloc as that type to fix the issue. In addition avoid returning an order from mb_avg_fragment_size_order() greater than MB_NUM_ORDERS(sb) and reduce some useless loops.
An out-of-bounds write issue was addressed with improved input validation. This issue is fixed in macOS Sonoma 14.6. An app may be able to cause a coprocessor crash.
Buffer Overflow vulnerability in Cesanta mJS 1.26 allows remote attackers to cause a denial of service via crafted .js file to mjs_set_errorf.
An out-of-bounds memory access flaw was found in the ATI VGA device emulation of QEMU. This flaw occurs in the ati_2d_blt() routine while handling MMIO write operations when the guest provides invalid values for the destination display parameters. A malicious guest could use this flaw to crash the QEMU process on the host, resulting in a denial of service.
GPAC 2.3-DEV-rev605-gfc9e29089-master contains a heap-buffer-overflow in gf_isom_use_compact_size gpac/src/isomedia/isom_write.c:3403:3 in gpac/MP4Box.
Out-of-bounds array write in Xpdf 4.05 and earlier, triggered by long Unicode sequence in ActualText.
Bootloader contains a vulnerability in NVIDIA MB2, which may cause free-the-wrong-heap, which may lead to limited denial of service.
An issue was discovered in Xen through 4.14.x. Out of bounds event channels are available to 32-bit x86 domains. The so called 2-level event channel model imposes different limits on the number of usable event channels for 32-bit x86 domains vs 64-bit or Arm (either bitness) ones. 32-bit x86 domains can use only 1023 channels, due to limited space in their shared (between guest and Xen) information structure, whereas all other domains can use up to 4095 in this model. The recording of the respective limit during domain initialization, however, has occurred at a time where domains are still deemed to be 64-bit ones, prior to actually honoring respective domain properties. At the point domains get recognized as 32-bit ones, the limit didn't get updated accordingly. Due to this misbehavior in Xen, 32-bit domains (including Domain 0) servicing other domains may observe event channel allocations to succeed when they should really fail. Subsequent use of such event channels would then possibly lead to corruption of other parts of the shared info structure. An unprivileged guest may cause another domain, in particular Domain 0, to misbehave. This may lead to a Denial of Service (DoS) for the entire system. All Xen versions from 4.4 onwards are vulnerable. Xen versions 4.3 and earlier are not vulnerable. Only x86 32-bit domains servicing other domains are vulnerable. Arm systems, as well as x86 64-bit domains, are not vulnerable.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow by passing crafted inputs to `tf.raw_ops.StringNGrams`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L171-L185) fails to consider corner cases where input would be split in such a way that the generated tokens should only contain padding elements. If input is such that `num_tokens` is 0, then, for `data_start_index=0` (when left padding is present), the marked line would result in reading `data[-1]`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
In Arm Trusted Firmware M through 1.2, the NS world may trigger a system halt, an overwrite of secure data, or the printing out of secure data when calling secure functions under the NSPE handler mode.
Out-of-bounds array write in Xpdf 4.05 and earlier, triggered by negative object number in indirect reference in the input PDF file.
AMD System Management Unit (SMU) may experience a heap-based overflow which may result in a loss of resources.