In Envoy through 1.11.1, users may configure a route to match incoming path headers via the libstdc++ regular expression implementation. A remote attacker may send a request with a very long URI to result in a denial of service (memory consumption). This is a related issue to CVE-2019-14993.
Pomerium is an open source identity-aware access proxy. Envoy, which Pomerium is based on, can abnormally terminate if an H/2 GOAWAY and SETTINGS frame are received in the same IO event. This can lead to a DoS in the presence of untrusted *upstream* servers. 0.15.1 contains an upgraded envoy binary with this vulnerability patched. If only trusted upstreams are configured, there is not substantial risk of this condition being triggered.
Envoy is a cloud-native high-performance edge/middle/service proxy. Envoy's 1.31 is using `oghttp` as the default HTTP/2 codec, and there are potential bugs around stream management in the codec. To resolve this Envoy will switch off the `oghttp2` by default. The impact of this issue is that envoy will crash. This issue has been addressed in release version 1.31.2. All users are advised to upgrade. There are no known workarounds for this issue.
Envoy is an open source edge and service proxy, designed for cloud-native applications. In affected versions of Envoy a crash occurs when configured for :ref:`upstream tunneling <envoy_v3_api_field_extensions.filters.network.tcp_proxy.v3.TcpProxy.tunneling_config>` and the downstream connection disconnects while the the upstream connection or http/2 stream is still being established. There are no workarounds for this issue. Users are advised to upgrade.
Envoy is a cloud-native, open source edge and service proxy. Due to how Envoy invoked the nlohmann JSON library, the library could throw an uncaught exception from downstream data if incomplete UTF-8 strings were serialized. The uncaught exception would cause Envoy to crash.
Pomerium is an open source identity-aware access proxy. Envoy, which Pomerium is based on, incorrectly handles resetting of HTTP/2 streams with excessive complexity. This can lead to high CPU utilization when a large number of streams are reset. This can result in a DoS condition. Pomerium versions 0.14.8 and 0.15.1 contain an upgraded envoy binary with this vulnerability patched.
Envoy is a cloud-native, open source edge and service proxy. There is a crash at `QuicheDataReader::PeekVarInt62Length()`. It is caused by integer underflow in the `QuicStreamSequencerBuffer::PeekRegion()` implementation.
Envoy is a high-performance edge/middle/service proxy. Envoy crashes in Proxy protocol when using an address type that isn’t supported by the OS. Envoy is susceptible to crashing on a host with IPv6 disabled and a listener config with proxy protocol enabled when it receives a request where the client presents its IPv6 address. It is valid for a client to present its IPv6 address to a target server even though the whole chain is connected via IPv4. This issue has been addressed in released 1.29.1, 1.28.1, 1.27.3, and 1.26.7. Users are advised to upgrade. There are no known workarounds for this vulnerability.
Envoy is a high-performance edge/middle/service proxy. When PPv2 is enabled both on a listener and subsequent cluster, the Envoy instance will segfault when attempting to craft the upstream PPv2 header. This occurs when the downstream request has a command type of LOCAL and does not have the protocol block. This issue has been addressed in releases 1.29.1, 1.28.1, 1.27.3, and 1.26.7. Users are advised to upgrade. There are no known workarounds for this vulnerability.
The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023.
Envoy is an open source L7 proxy and communication bus designed for large modern service oriented architectures. In affected versions Envoy transitions a H/2 connection to the CLOSED state when it receives a GOAWAY frame without any streams outstanding. The connection state is transitioned to DRAINING when it receives a SETTING frame with the SETTINGS_MAX_CONCURRENT_STREAMS parameter set to 0. Receiving these two frames in the same I/O event results in abnormal termination of the Envoy process due to invalid state transition from CLOSED to DRAINING. A sequence of H/2 frames delivered by an untrusted upstream server will result in Denial of Service in the presence of untrusted **upstream** servers. Envoy versions 1.19.1, 1.18.4 contain fixes to stop processing of pending H/2 frames after connection transition to the CLOSED state.
Envoy master between 2d69e30 and 3b5acb2 may fail to parse request URL that requires host canonicalization.
Envoy is a cloud-native high-performance proxy. In versions prior to 1.22.1 the OAuth filter would try to invoke the remaining filters in the chain after emitting a local response, which triggers an ASSERT() in newer versions and corrupts memory on earlier versions. continueDecoding() shouldn’t ever be called from filters after a local reply has been sent. Users are advised to upgrade. There are no known workarounds for this issue.
An issue was discovered in Envoy through 1.71.1. There is a remotely exploitable NULL pointer dereference and crash in TLS when an unknown TLS alert code is received.
An issue was discovered in Envoy through 1.71.1. There is a remotely exploitable integer overflow in which a very large grpc-timeout value leads to unexpected timeout calculations.
Envoy version 1.14.2, 1.13.2, 1.12.4 or earlier may consume excessive amounts of memory when proxying HTTP/2 requests or responses with many small (i.e. 1 byte) data frames.
Envoy is a cloud-native high-performance edge/middle/service proxy. In versions prior to 1.22.1 if Envoy attempts to send an internal redirect of an HTTP request consisting of more than HTTP headers, there’s a lifetime bug which can be triggered. If while replaying the request Envoy sends a local reply when the redirect headers are processed, the downstream state indicates that the downstream stream is not complete. On sending the local reply, Envoy will attempt to reset the upstream stream, but as it is actually complete, and deleted, this result in a use-after-free. Users are advised to upgrade. Users unable to upgrade are advised to disable internal redirects if crashes are observed.
Envoy version 1.14.2, 1.13.2, 1.12.4 or earlier may exhaust file descriptors and/or memory when accepting too many connections.
Envoy is a high-performance edge/middle/service proxy. Envoy will crash when certain timeouts happen within the same interval. The crash occurs when the following are true: 1. hedge_on_per_try_timeout is enabled, 2. per_try_idle_timeout is enabled (it can only be done in configuration), 3. per-try-timeout is enabled, either through headers or configuration and its value is equal, or within the backoff interval of the per_try_idle_timeout. This issue has been addressed in released 1.29.1, 1.28.1, 1.27.3, and 1.26.7. Users are advised to upgrade. There are no known workarounds for this vulnerability.
Envoy is a cloud-native high-performance proxy. In versions prior to 1.22.1 secompressors accumulate decompressed data into an intermediate buffer before overwriting the body in the decode/encodeBody. This may allow an attacker to zip bomb the decompressor by sending a small highly compressed payload. Maliciously constructed zip files may exhaust system memory and cause a denial of service. Users are advised to upgrade. Users unable to upgrade may consider disabling decompression.
Envoy before 1.16.1 mishandles dropped and truncated datagrams, as demonstrated by a segmentation fault for a UDP packet size larger than 1500.
Envoy version 1.14.2, 1.13.2, 1.12.4 or earlier is susceptible to increased memory usage in the case where an HTTP/2 client requests a large payload but does not send enough window updates to consume the entire stream and does not reset the stream.
Envoy is an open source edge and service proxy, designed for cloud-native applications. The envoy common router will segfault if an internal redirect selects a route configured with direct response or redirect actions. This will result in a denial of service. As a workaround turn off internal redirects if direct response entries are configured on the same listener.
An issue was discovered in Envoy 1.12.0. Upon receipt of a malformed HTTP request without a Host header, it sends an internally generated "Invalid request" response. This internally generated response is dispatched through the configured encoder filter chain before being sent to the client. An encoder filter that invokes route manager APIs that access a request's Host header causes a NULL pointer dereference, resulting in abnormal termination of the Envoy process.
Envoy is an open source edge and service proxy, designed for cloud-native applications. In affected versions a crafted request crashes Envoy when a CONNECT request is sent to JWT filter configured with regex match. This provides a denial of service attack vector. The only workaround is to not use regex in the JWT filter. Users are advised to upgrade.
Envoy is an open source edge and service proxy, designed for cloud-native applications. Sending a locally generated response must stop further processing of request or response data. Envoy tracks the amount of buffered request and response data and aborts the request if the amount of buffered data is over the limit by sending 413 or 500 responses. However when the buffer overflows while response is processed by the filter chain the operation may not be aborted correctly and result in accessing a freed memory block. If this happens Envoy will crash resulting in a denial of service.
Envoy is an open source L7 proxy and communication bus designed for large modern service oriented architectures. In affected versions envoy’s procedure for resetting a HTTP/2 stream has O(N^2) complexity, leading to high CPU utilization when a large number of streams are reset. Deployments are susceptible to Denial of Service when Envoy is configured with high limit on H/2 concurrent streams. An attacker wishing to exploit this vulnerability would require a client opening and closing a large number of H/2 streams. Envoy versions 1.19.1, 1.18.4, 1.17.4, 1.16.5 contain fixes to reduce time complexity of resetting HTTP/2 streams. As a workaround users may limit the number of simultaneous HTTP/2 dreams for upstream and downstream peers to a low number, i.e. 100.
Envoy is an open source L7 proxy and communication bus designed for large modern service oriented architectures. In affected versions after Envoy sends a locally generated response it must stop further processing of request or response data. However when local response is generated due the internal buffer overflow while request or response is processed by the filter chain the operation may not be stopped completely and result in accessing a freed memory block. A specifically constructed request delivered by an untrusted downstream or upstream peer in the presence of extensions that modify and increase the size of request or response bodies resulting in a Denial of Service when using extensions that modify and increase the size of request or response bodies, such as decompressor filter. Envoy versions 1.19.1, 1.18.4, 1.17.4, 1.16.5 contain fixes to address incomplete termination of request processing after locally generated response. As a workaround disable Envoy's decompressor, json-transcoder or grpc-web extensions or proprietary extensions that modify and increase the size of request or response bodies, if feasible.
Upon receiving each incoming request header data, Envoy will iterate over existing request headers to verify that the total size of the headers stays below a maximum limit. The implementation in versions 1.10.0 through 1.11.1 for HTTP/1.x traffic and all versions of Envoy for HTTP/2 traffic had O(n^2) performance characteristics. A remote attacker may craft a request that stays below the maximum request header size but consists of many thousands of small headers to consume CPU and result in a denial-of-service attack.
Envoy is a cloud-native high-performance edge/middle/service proxy. Envoy’s HTTP/2 codec may leak a header map and bookkeeping structures upon receiving `RST_STREAM` immediately followed by the `GOAWAY` frames from an upstream server. In nghttp2, cleanup of pending requests due to receipt of the `GOAWAY` frame skips de-allocation of the bookkeeping structure and pending compressed header. The error return [code path] is taken if connection is already marked for not sending more requests due to `GOAWAY` frame. The clean-up code is right after the return statement, causing memory leak. Denial of service through memory exhaustion. This vulnerability was patched in versions(s) 1.26.3, 1.25.8, 1.24.9, 1.23.11.
An issue was discovered in Envoy 1.14.0. There is a remotely exploitable crash for HTTP2 Metadata, because an empty METADATA map triggers a Reachable Assertion.
Envoy is an open source edge and service proxy designed for cloud-native applications. Prior to versions 1.27.0, 1.26.4, 1.25.9, 1.24.10, and 1.23.12, the CORS filter will segfault and crash Envoy when the `origin` header is removed and deleted between `decodeHeaders`and `encodeHeaders`. Versions 1.27.0, 1.26.4, 1.25.9, 1.24.10, and 1.23.12 have a fix for this issue. As a workaround, do not remove the `origin` header in the Envoy configuration.
Envoy 1.12.0 allows a remote denial of service because of resource loops, as demonstrated by a single idle TCP connection being able to keep a worker thread in an infinite busy loop when continue_on_listener_filters_timeout is used."
Envoy is a cloud-native high-performance edge/middle/service proxy. In affected versions `sendOverloadError` is going to assume the active request exists when `envoy.load_shed_points.http1_server_abort_dispatch` is configured. If `active_request` is nullptr, only onMessageBeginImpl() is called. However, the `onMessageBeginImpl` will directly return ok status if the stream is already reset leading to the nullptr reference. The downstream reset can actually happen during the H/2 upstream reset. As a result envoy may crash. This issue has been addressed in releases 1.32.3, 1.31.5, 1.30.9, and 1.29.12. Users are advised to upgrade. Users unable to upgrade may disable `http1_server_abort_dispatch` load shed point and/or use a high threshold.
Envoy is an open source edge and service proxy designed for cloud-native applications. Prior to versions 1.26.0, 1.25.3, 1.24.4, 1.23.6, and 1.22.9, the OAuth filter assumes that a `state` query param is present on any response that looks like an OAuth redirect response. Sending it a request with the URI path equivalent to the redirect path, without the `state` parameter, will lead to abnormal termination of Envoy process. Versions 1.26.0, 1.25.3, 1.24.4, 1.23.6, and 1.22.9 contain a patch. The issue can also be mitigated by locking down OAuth traffic, disabling the filter, or by filtering traffic before it reaches the OAuth filter (e.g. via a lua script).
Envoy is a cloud-native, open source edge and service proxy. When an upstream TLS cluster is used with `auto_sni` enabled, a request containing a `host`/`:authority` header longer than 255 characters triggers an abnormal termination of Envoy process. Envoy does not gracefully handle an error when setting SNI for outbound TLS connection. The error can occur when Envoy attempts to use the `host`/`:authority` header value longer than 255 characters as SNI for outbound TLS connection. SNI length is limited to 255 characters per the standard. Envoy always expects this operation to succeed and abnormally aborts the process when it fails. This vulnerability is fixed in 1.30.1, 1.29.4, 1.28.3, and 1.27.5.
Envoy is a cloud-native, open source edge and service proxy. Envoyproxy with a Brotli filter can get into an endless loop during decompression of Brotli data with extra input.
Envoy is a cloud-native, open source edge and service proxy. A crash was observed in `EnvoyQuicServerStream::OnInitialHeadersComplete()` with following call stack. It is a use-after-free caused by QUICHE continuing push request headers after `StopReading()` being called on the stream. As after `StopReading()`, the HCM's `ActiveStream` might have already be destroyed and any up calls from QUICHE could potentially cause use after free.
Envoy is a cloud-native, open-source edge and service proxy. In versions 1.29.0 and 1.29.1, theEnvoy HTTP/2 protocol stack is vulnerable to the flood of CONTINUATION frames. Envoy's HTTP/2 codec does not reset a request when header map limits have been exceeded. This allows an attacker to send an sequence of CONTINUATION frames without the END_HEADERS bit set causing unlimited memory consumption. This can lead to denial of service through memory exhaustion. Users should upgrade to versions 1.29.2 to mitigate the effects of the CONTINUATION flood. Note that this vulnerability is a regression in Envoy version 1.29.0 and 1.29.1 only. As a workaround, downgrade to version 1.28.1 or earlier or disable HTTP/2 protocol for downstream connections.
Envoy is an open source edge and service proxy designed for cloud-native applications. Prior to versions 1.26.0, 1.25.3, 1.24.4, 1.23.6, and 1.22.9, the Lua filter is vulnerable to denial of service. Attackers can send large request bodies for routes that have Lua filter enabled and trigger crashes. As of versions versions 1.26.0, 1.25.3, 1.24.4, 1.23.6, and 1.22.9, Envoy no longer invokes the Lua coroutine if the filter has been reset. As a workaround for those whose Lua filter is buffering all requests/ responses, mitigate by using the buffer filter to avoid triggering the local reply in the Lua filter.
Kiwi TCMS, an open source test management system, does not impose rate limits in versions prior to 12.0. This makes it easier to attempt brute-force attacks against the login page. Users should upgrade to v12.0 or later to receive a patch. As a workaround, users may install and configure a rate-limiting proxy in front of Kiwi TCMS.
Multipart form parsing can consume large amounts of CPU and memory when processing form inputs containing very large numbers of parts. This stems from several causes: 1. mime/multipart.Reader.ReadForm limits the total memory a parsed multipart form can consume. ReadForm can undercount the amount of memory consumed, leading it to accept larger inputs than intended. 2. Limiting total memory does not account for increased pressure on the garbage collector from large numbers of small allocations in forms with many parts. 3. ReadForm can allocate a large number of short-lived buffers, further increasing pressure on the garbage collector. The combination of these factors can permit an attacker to cause an program that parses multipart forms to consume large amounts of CPU and memory, potentially resulting in a denial of service. This affects programs that use mime/multipart.Reader.ReadForm, as well as form parsing in the net/http package with the Request methods FormFile, FormValue, ParseMultipartForm, and PostFormValue. With fix, ReadForm now does a better job of estimating the memory consumption of parsed forms, and performs many fewer short-lived allocations. In addition, the fixed mime/multipart.Reader imposes the following limits on the size of parsed forms: 1. Forms parsed with ReadForm may contain no more than 1000 parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxparts=. 2. Form parts parsed with NextPart and NextRawPart may contain no more than 10,000 header fields. In addition, forms parsed with ReadForm may contain no more than 10,000 header fields across all parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxheaders=.
Apache Commons FileUpload before 1.5 does not limit the number of request parts to be processed resulting in the possibility of an attacker triggering a DoS with a malicious upload or series of uploads. Note that, like all of the file upload limits, the new configuration option (FileUploadBase#setFileCountMax) is not enabled by default and must be explicitly configured.
An SRX Series Service Gateway configured for Unified Threat Management (UTM) may experience a system crash with the error message "mbuf exceed" -- an indication of memory buffer exhaustion -- due to the receipt of crafted HTTP traffic. Each crafted HTTP packet inspected by UTM consumes mbufs which can be identified through the following log messages: all_logs.0:Jun 8 03:25:03 srx1 node0.fpc4 : SPU3 jmpi mbuf stall 50%. all_logs.0:Jun 8 03:25:13 srx1 node0.fpc4 : SPU3 jmpi mbuf stall 51%. all_logs.0:Jun 8 03:25:24 srx1 node0.fpc4 : SPU3 jmpi mbuf stall 52%. ... Eventually the system runs out of mbufs and the system crashes (fails over) with the error "mbuf exceed". This issue only occurs when HTTP AV inspection is configured. Devices configured for Web Filtering alone are unaffected by this issue. Affected releases are Junos OS on SRX Series: 12.1X46 versions prior to 12.1X46-D81; 12.3X48 versions prior to 12.3X48-D77; 15.1X49 versions prior to 15.1X49-D101, 15.1X49-D110.
Kiwi TCMS, an open source test management system, does not impose rate limits in versions prior to 12.0. This makes it easier to attempt denial-of-service attacks against the Password reset page. An attacker could potentially send a large number of emails if they know the email addresses of users in Kiwi TCMS. Additionally that may strain SMTP resources. Users should upgrade to v12.0 or later to receive a patch. As potential workarounds, users may install and configure a rate-limiting proxy in front of Kiwi TCMS and/or configure rate limits on their email server when possible.
hb-ot-layout-gsubgpos.hh in HarfBuzz through 6.0.0 allows attackers to trigger O(n^2) growth via consecutive marks during the process of looking back for base glyphs when attaching marks.
A regular expression denial of service (ReDoS) vulnerability exits in cbioportal 3.6.21 and older via a POST request to /ProteinArraySignificanceTest.json.
sha256crypt and sha512crypt through 0.6 allow attackers to cause a denial of service (CPU consumption) because the algorithm's runtime is proportional to the square of the length of the password.
Specific IPv6 DHCP packets received by the jdhcpd daemon will cause a memory resource consumption issue to occur on a Junos OS device using the jdhcpd daemon configured to respond to IPv6 requests. Once started, memory consumption will eventually impact any IPv4 or IPv6 request serviced by the jdhcpd daemon, thus creating a Denial of Service (DoS) condition to clients requesting and not receiving IP addresses. Additionally, some clients which were previously holding IPv6 addresses will not have their IPv6 Identity Association (IA) address and network tables agreed upon by the jdhcpd daemon after the failover event occurs, which leads to more than one interface, and multiple IP addresses, being denied on the client. Affected releases are Juniper Networks Junos OS: 17.4 versions prior to 17.4R2; 18.1 versions prior to 18.1R2.
In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large.