General Electric (GE) Multilink ML800, ML1200, ML1600, and ML2400 switches with firmware before 5.5.0 and ML810, ML3000, and ML3100 switches with firmware before 5.5.0k have hardcoded credentials, which allows remote attackers to modify configuration settings via the web interface.
CVE-2024-10386 IMPACT An authentication vulnerability exists in the affected product. The vulnerability could allow a threat actor with network access to send crafted messages to the device, potentially resulting in database manipulation.
An issue was discovered in FC46-WebBridge on GE Grid Solutions MS3000 devices before 3.7.6.25p0_3.2.2.17p0_4.7p0. Direct access to the API is possible on TCP port 8888 via programs located in the cgi-bin folder without any authentication.
Java remote method invocation (RMI) input port in GE MDS PulseNET and MDS PulseNET Enterprise version 3.2.1 and prior may be exploited to allow unauthenticated users to launch applications and support remote code execution through web services.
Stack-based buffer overflow on Rockwell Automation Allen-Bradley MicroLogix 1100 devices A through 15.000 and B before 15.002 allows remote attackers to execute arbitrary code via a crafted web request.
FactoryTalk Linx versions 6.00, 6.10, and 6.11, RSLinx Classic v4.11.00 and prior,Connected Components Workbench: Version 12 and prior, ControlFLASH: Version 14 and later, ControlFLASH Plus: Version 1 and later, FactoryTalk Asset Centre: Version 9 and later, FactoryTalk Linx CommDTM: Version 1 and later, Studio 5000 Launcher: Version 31 and later Stud, 5000 Logix Designer software: Version 32 and prior is vulnerable. The parsing mechanism that processes certain file types does not provide input sanitation. This may allow an attacker to use specially crafted files to traverse the file system and modify or expose sensitive data or execute arbitrary code.
GE Grid Solutions Reason RT Clocks, RT430, RT431, and RT434, all firmware versions prior to 08A05. The device’s vulnerability in the web application could allow multiple unauthenticated attacks that could cause serious impact. The vulnerability may allow an unauthenticated attacker to execute arbitrary commands and send a request to a specific URL that could cause the device to become unresponsive. The unauthenticated attacker may change the password of the 'configuration' user account, allowing the attacker to modify the configuration of the device via the web interface using the new password. This vulnerability may also allow an unauthenticated attacker to bypass the authentication required to configure the device and reboot the system.
An attacker with the ability to modify a user program may change user program code on some ControlLogix, CompactLogix, and GuardLogix Control systems. Studio 5000 Logix Designer writes user-readable program code to a separate location than the executed compiled code, allowing an attacker to change one and not the other.
A heap overflow vulnerability exists within FactoryTalk Linx Version 6.11 and prior. This vulnerability could allow a remote, unauthenticated attacker to send malicious port ranges, which could result in remote code execution.
Rockwell Automation PowerFlex 525 AC Drives 5.001 and earlier allow remote attackers to cause a denial of service by crashing the Common Industrial Protocol (CIP) network stack. The vulnerability allows the attacker to crash the CIP in a way that it does not accept new connections, but keeps the current connections active, which can prevent legitimate users from recovering control.
Some commands used by the Rockwell Automation ISaGRAF Runtime Versions 4.x and 5.x eXchange Layer (IXL) protocol perform various file operations in the file system. Since the parameter pointing to the file name is not checked for reserved characters, it is possible for a remote, unauthenticated attacker to traverse an application’s directory, which could lead to remote code execution.
When connecting to a certain port Axeda agent (All versions) and Axeda Desktop Server for Windows (All versions) may allow an attacker to send certain XML messages to a specific port without proper authentication. Successful exploitation of this vulnerability could allow a remote unauthenticated attacker to read and modify the affected product’s configuration.
Axeda agent (All versions) and Axeda Desktop Server for Windows (All versions) may allow an attacker to send certain commands to a specific port without authentication. Successful exploitation of this vulnerability could allow a remote unauthenticated attacker to obtain full file-system access and remote code execution.
Axeda agent (All versions) and Axeda Desktop Server for Windows (All versions) uses hard-coded credentials for its UltraVNC installation. Successful exploitation of this vulnerability could allow a remote authenticated attacker to take full remote control of the host operating system.
Certain General Electric Renewable Energy products download firmware without an integrity check. This affects iNET and iNET II before 8.3.0, SD before 6.4.7, TD220X before 2.0.16, and TD220MAX before 1.2.6.
Certain General Electric Renewable Energy products have a hidden feature for unauthenticated remote access to the device configuration shell. This affects iNET and iNET II before 8.3.0.
Certain General Electric Renewable Energy products have inadequate encryption strength. This affects iNET and iNET II before 8.3.0.
A code injection vulnerability exists in one of the webpages in GE Reason RT430, RT431 & RT434 GNSS clocks in firmware versions prior to version 08A06 that could allow an authenticated remote attacker to execute arbitrary code on the system.
GE Fanuc Proficy Real-Time Information Portal 2.6 and earlier uses HTTP Basic Authentication, which transmits usernames and passwords in base64-encoded cleartext and allows remote attackers to steal the passwords and gain privileges.
An Information Exposure issue was discovered in Rockwell Automation Allen-Bradley MicroLogix 1100 programmable-logic controllers 1763-L16AWA, Series A and B, Version 16.00 and prior versions; 1763-L16BBB, Series A and B, Version 16.00 and prior versions; 1763-L16BWA, Series A and B, Version 16.00 and prior versions; and 1763-L16DWD, Series A and B, Version 16.00 and prior versions and Allen-Bradley MicroLogix 1400 programmable logic controllers 1766-L32AWA, Series A and B, Version 16.00 and prior versions; 1766-L32BWA, Series A and B, Version 16.00 and prior versions; 1766-L32BWAA, Series A and B, Version 16.00 and prior versions; 1766-L32BXB, Series A and B, Version 16.00 and prior versions; 1766-L32BXBA, Series A and B, Version 16.00 and prior versions; and 1766-L32AWAA, Series A and B, Version 16.00 and prior versions. User credentials are sent to the web server using the HTTP GET method, which may result in the credentials being logged. This could make user credentials available for unauthorized retrieval.
The affected product is vulnerable due to cleartext transmission of credentials seen in the CIMPLICITY network, which can be easily spoofed and used to log in to make operational changes to the system.
The Rockwell Automation Thinmanager Thinserver is impacted by an improper input validation vulnerability. Due to an improper input validation, a path traversal vulnerability exists, via the filename field, when the ThinManager processes a certain function. If exploited, an unauthenticated remote attacker can upload arbitrary files to any directory on the disk drive where ThinServer.exe is installed. A malicious user could exploit this vulnerability by sending a crafted synchronization protocol message and potentially gain remote code execution abilities.
GE Communicator, all versions prior to 4.0.517, contains two backdoor accounts with hardcoded credentials, which may allow control over the database. This service is inaccessible to attackers if Windows default firewall settings are used by the end user.
Where this vulnerability exists in the Rockwell Automation 1756 EN2* and 1756 EN3* ControlLogix communication products, it could allow a malicious user to perform remote code execution with persistence on the target system through maliciously crafted CIP messages. This includes the ability to modify, deny, and exfiltrate data passing through the device.
All versions of GE Digital CIMPLICITY that are not adhering to SDG guidance and accepting documents from untrusted sources are vulnerable to memory corruption issues due to insufficient input validation, including issues such as out-of-bounds reads and writes, use-after-free, stack-based buffer overflows, uninitialized pointers, and a heap-based buffer overflow. Successful exploitation could allow an attacker to execute arbitrary code.
Rockwell Automation ThinManager ThinServer versions 11.0.0 - 13.0.0 is vulnerable to a heap-based buffer overflow. An attacker could send a specifically crafted TFTP or HTTPS request, causing a heap-based buffer overflow that crashes the ThinServer process. If successfully exploited, this could expose the server to arbitrary remote code execution.
A vulnerability exists in the Rockwell Automation FactoryTalk® View SE Datalog function that could allow a threat actor to inject a malicious SQL statement if the SQL database has no authentication in place or if legitimate credentials were stolen. If exploited, the attack could result in information exposure, revealing sensitive information. Additionally, a threat actor could potentially modify and delete the data in a remote database. An attack would only affect the HMI design time, not runtime.
CVE-2024-45823 IMPACT An authentication bypass vulnerability exists in the affected product. The vulnerability exists due to shared secrets across accounts and could allow a threat actor to impersonate a user if the threat actor is able to enumerate additional information required during authentication.
CVE-2024-45824 IMPACT A remote code vulnerability exists in the affected products. The vulnerability occurs when chained with Path Traversal, Command Injection, and XSS Vulnerabilities and allows for full unauthenticated remote code execution. The link in the mitigations section below contains patches to fix this issue.
GE UR IED firmware versions prior to version 8.1x with “Basic” security variant does not allow the disabling of the “Factory Mode,” which is used for servicing the IED by a “Factory” user.
A deserialization vulnerability exists in how the AosService.rem service in Rockwell Automation FactoryTalk AssetCentre v10.00 and earlier verifies serialized data. This vulnerability may allow a remote, unauthenticated attacker to execute arbitrary commands in FactoryTalk AssetCentre.
A deserialization vulnerability exists in how the ArchiveService.rem service in Rockwell Automation FactoryTalk AssetCentre v10.00 and earlier verifies serialized data. This vulnerability may allow a remote, unauthenticated attacker to execute arbitrary commands in FactoryTalk AssetCentre.
A deserialization vulnerability exists in how the LogService.rem service in Rockwell Automation FactoryTalk AssetCentre v10.00 and earlier verifies serialized data. This vulnerability may allow a remote, unauthenticated attacker to execute arbitrary commands in FactoryTalk AssetCentre.
Rockwell Automation Studio 5000 Logix Designer Versions 21 and later, and RSLogix 5000 Versions 16 through 20 use a key to verify Logix controllers are communicating with Rockwell Automation CompactLogix 1768, 1769, 5370, 5380, 5480: ControlLogix 5550, 5560, 5570, 5580; DriveLogix 5560, 5730, 1794-L34; Compact GuardLogix 5370, 5380; GuardLogix 5570, 5580; SoftLogix 5800. Rockwell Automation Studio 5000 Logix Designer Versions 21 and later and RSLogix 5000: Versions 16 through 20 are vulnerable because an unauthenticated attacker could bypass this verification mechanism and authenticate with Rockwell Automation CompactLogix 1768, 1769, 5370, 5380, 5480: ControlLogix 5550, 5560, 5570, 5580; DriveLogix 5560, 5730, 1794-L34; Compact GuardLogix 5370, 5380; GuardLogix 5570, 5580; SoftLogix 5800.
Rockwell Automation MicroLogix 1400 Controllers Series B v21.001 and prior, Series A, all versions, MicroLogix 1100 Controller, all versions, RSLogix 500 Software v12.001 and prior, The cryptographic key utilized to help protect the account password is hard coded into the RSLogix 500 binary file. An attacker could identify cryptographic keys and use it for further cryptographic attacks that could ultimately lead to a remote attacker gaining unauthorized access to the controller.
A Stack-based Buffer Overflow issue was discovered in GE CIMPLICITY Versions 9.0 and prior. A function reads a packet to indicate the next packet length. The next packet length is not verified, allowing a buffer overwrite that could lead to an arbitrary remote code execution.
A memory abuse issue exists in the Rockwell Automation Arena® Simulation. A custom file can force Arena Simulation to read and write past the end of memory space. Successful use requires user action, such as opening a bad file or webpage. If used, a threat actor could execute code or disclose information.
An attacker could send crafted SMTP packets to cause a denial-of-service condition where the controller enters a major non-recoverable faulted state (MNRF) in CompactLogix 5370 L1, L2, and L3 Controllers, Compact GuardLogix 5370 controllers, and Armor Compact GuardLogix 5370 Controllers Versions 20 - 30 and earlier.
Netgear WNR854T 1.5.2 (North America) contains a stack-based buffer overflow vulnerability in the SetDefaultConnectionService function due to an unconstrained use of sscanf. The vulnerability allows for control of the program counter and can be utilized to achieve arbitrary code execution.
Stack-based Buffer Overflow vulnerability in Shenzhen Tenda Technology Co Tenda AC6V2 (setDoubleL2tpConfig->guest_ip_check(overflow arg: mask) modules) allows Overflow Buffers.This issue affects Tenda AC6V2: through 15.03.06.50
Stack-based Buffer Overflow vulnerability in Shenzhen Tenda Technology Co Tenda AC6V2 (setDoublePppoeConfig->guest_ip_check(overflow arg: mask) modules) allows Overflow Buffers.This issue affects Tenda AC6V2: through 15.03.06.50
Stack-based Buffer Overflow vulnerability in Shenzhen Tenda Technology Co Tenda AC6V2 (fromAdvSetLanip(overflow arg:lanMask) modules) allows Overflow Buffers.This issue affects Tenda AC6V2: through 15.03.06.50
A Stack Buffer Overflow issue was discovered in 3S-Smart Software Solutions GmbH CODESYS Web Server. The following versions of CODESYS Web Server, part of the CODESYS WebVisu web browser visualization software, are affected: CODESYS Web Server Versions 2.3 and prior. A malicious user could overflow the stack buffer by providing overly long strings to functions that handle the XML. Because the function does not verify string size before copying to memory, the attacker may then be able to crash the application or run arbitrary code.
The affected product is vulnerable to a stack-based buffer overflow. An unauthenticated attacker could send a malicious HTTP request that the webserver fails to properly check input size before copying data to the stack, potentially allowing remote code execution.
Commvault Edge Communication Service (cvd) prior to version 11 SP7 or version 11 SP6 with hotfix 590 is prone to a stack-based buffer overflow vulnerability that could lead to arbitrary code execution with administrative privileges.
Dahua IP camera products using firmware versions prior to V2.400.0000.14.R.20170713 include a version of the Sonia web interface that may be vulnerable to a stack buffer overflow. Dahua IP camera products include an application known as Sonia (/usr/bin/sonia) that provides the web interface and other services for controlling the IP camera remotely. Versions of Sonia included in firmware versions prior to DH_IPC-Consumer-Zi-Themis_Eng_P_V2.408.0000.11.R.20170621 do not validate input data length for the 'password' field of the web interface. A remote, unauthenticated attacker may submit a crafted POST request to the IP camera's Sonia web interface that may lead to out-of-bounds memory operations and loss of availability or remote code execution. The issue was originally identified by the researcher in firmware version DH_IPC-HX1X2X-Themis_EngSpnFrn_N_V2.400.0000.30.R.20160803.
Stack overflow in PJSUA API when calling pjsua_recorder_create. An attacker-controlled 'filename' argument may cause a buffer overflow since it is copied to a fixed-size stack buffer without any size validation.
Tenda O6 V3.0 firmware V1.0.0.7(2054) contains a stack overflow vulnerability in the formexeCommand function.
Stack overflow in PJSUA API when calling pjsua_player_create. An attacker-controlled 'filename' argument may cause a buffer overflow since it is copied to a fixed-size stack buffer without any size validation.
Tenda FH451 v1.0.0.9 has a stack overflow vulnerability located in the RouteStatic function.