Contiki-NG is an operating system for internet of things devices. In version 4.8 and prior, when processing ICMP DAO packets in the `dao_input_storing` function, the Contiki-NG OS does not verify that the packet buffer is big enough to contain the bytes it needs before accessing them. Up to 16 bytes can be read out of bounds in the `dao_input_storing` function. An attacker can truncate an ICMP packet so that it does not contain enough data, leading to an out-of-bounds read on these lines. The problem has been patched in the "develop" branch of Contiki-NG, and is expected to be included in release 4.9. As a workaround, one can apply the changes in Contiki-NG pull request #2435 to patch the system.
Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. An out-of-bounds read can be caused by an incoming DIO message when using the RPL-Lite implementation in the Contiki-NG operating system. More specifically, the prefix information of the DIO message contains a field that specifies the length of an IPv6 address prefix. The value of this field is not validated, which means that an attacker can set a value that is longer than the maximum prefix length. Subsequently, a memcmp function call that compares different prefixes can be called with a length argument that surpasses the boundary of the array allocated for the prefix, causing an out-of-bounds read. The problem has been patched in the "develop" branch of Contiki-NG, and is expected to be included in the next release. Users are advised to update as soon as they are able to or to manually apply the changes in Contiki-NG pull request #2721.
An issue was discovered in Contiki-NG through 4.1. There is a buffer over-read in lookup in os/storage/antelope/lvm.c while parsing AQL (lvm_register_variable, lvm_set_variable_value, create_intersection, create_union).
Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. An attacker can trigger out-of-bounds reads in the RPL-Lite implementation of the RPL protocol in the Contiki-NG operating system. This vulnerability is caused by insufficient control of the lengths for DIO and DAO messages, in particular when they contain RPL sub-option headers. The problem has been patched in Contiki-NG 4.9. Users are advised to upgrade. Users unable to upgrade should manually apply the code changes in PR #2484.
Contiki-NG is an operating system for internet-of-things devices. In versions 4.9 and prior, when a packet is received, the Contiki-NG network stack attempts to start the periodic TCP timer if it is a TCP packet with the SYN flag set. But the implementation does not first verify that a full TCP header has been received. Specifically, the implementation attempts to access the flags field from the TCP buffer in the following conditional expression in the `check_for_tcp_syn` function. For this reason, an attacker can inject a truncated TCP packet, which will lead to an out-of-bound read from the packet buffer. As of time of publication, a patched version is not available. As a workaround, one can apply the changes in Contiki-NG pull request #2510 to patch the system.
Contiki-NG is an operating system for internet-of-things devices. In versions 4.9 and prior, when processing the various IPv6 header fields during IPHC header decompression, Contiki-NG confirms the received packet buffer contains enough data as needed for that field. But no similar check is done before decompressing the IPv6 address. Therefore, up to 16 bytes can be read out of bounds on the line with the statement `memcpy(&ipaddr->u8[16 - postcount], iphc_ptr, postcount);`. The value of `postcount` depends on the address compression used in the received packet and can be controlled by the attacker. As a result, an attacker can inject a packet that causes an out-of-bound read. As of time of publication, a patched version is not available. As a workaround, one can apply the changes in Contiki-NG pull request #2509 to patch the system.
Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. Versions prior to 4.9 are vulnerable to an Out-of-bounds read. While processing the L2CAP protocol, the Bluetooth Low Energy stack of Contiki-NG needs to map an incoming channel ID to its metadata structure. While looking up the corresponding channel structure in get_channel_for_cid (in os/net/mac/ble/ble-l2cap.c), a bounds check is performed on the incoming channel ID, which is meant to ensure that the channel ID does not exceed the maximum number of supported channels.However, an integer truncation issue leads to only the lowest byte of the channel ID to be checked, which leads to an incomplete out-of-bounds check. A crafted channel ID leads to out-of-bounds memory to be read and written with attacker-controlled data. The vulnerability has been patched in the "develop" branch of Contiki-NG, and will be included in release 4.9. As a workaround, Users can apply the patch in Contiki-NG pull request 2081 on GitHub.
Contiki-NG is an operating system for Internet of Things devices. An off-by-one error can be triggered in the Antelope database management system in the Contiki-NG operating system in versions 4.8 and prior. The problem exists in the Contiki File System (CFS) backend for the storage of data (file os/storage/antelope/storage-cfs.c). In the functions `storage_get_index` and `storage_put_index`, a buffer for merging two strings is allocated with one byte less than the maximum size of the merged strings, causing subsequent function calls to the cfs_open function to read from memory beyond the buffer size. The vulnerability has been patched in the "develop" branch of Contiki-NG, and is expected to be included in the next release. As a workaround, the problem can be fixed by applying the patch in Contiki-NG pull request #2425.
An issue was discovered in uIP through 1.0, as used in Contiki and Contiki-NG. Domain name parsing lacks bounds checks, allowing an attacker to corrupt memory with crafted DNS packets.
Buffer over-read vulnerability in the dtls_sha256_update function in Contiki-NG tinyDTLS through master branch 53a0d97 allows remote attackers to cause a denial of service via crafted data packet.
Buffer over-read vulnerability in Contiki-NG tinyDTLS through master branch 53a0d97 allows attackers obtain sensitive information via crafted input to dtls_ccm_decrypt_message().
The code that processes DNS responses in uIP through 1.0, as used in Contiki and Contiki-NG, does not check whether the number of responses specified in the DNS packet header corresponds to the response data available in the DNS packet, leading to an out-of-bounds read and Denial-of-Service in resolv.c.
An out-of-bounds read in the SNMP stack in Contiki-NG 4.4 and earlier allows an attacker to cause a denial of service and potentially disclose information via crafted SNMP packets to snmp_ber_decode_string_len_buffer in os/net/app-layer/snmp/snmp-ber.c.
Contiki-NG is an open-source, cross-platform operating system for IoT devices. Because of insufficient validation of IPv6 neighbor discovery options in Contiki-NG, attackers can send neighbor solicitation packets that trigger an out-of-bounds read. The problem exists in the module os/net/ipv6/uip-nd6.c, where memory read operations from the main packet buffer, <code>uip_buf</code>, are not checked if they go out of bounds. In particular, this problem can occur when attempting to read the 2-byte option header and the Source Link-Layer Address Option (SLLAO). This attack requires ipv6 be enabled for the network. The problem has been patched in the develop branch of Contiki-NG. The upcoming 4.8 release of Contiki-NG will include the patch.Users unable to upgrade may apply the patch in Contiki-NG PR #1654.
Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. The low-power IPv6 network stack of Contiki-NG has a buffer module (os/net/ipv6/uipbuf.c) that processes IPv6 extension headers in incoming data packets. As part of this processing, the function uipbuf_get_next_header casts a pointer to a uip_ext_hdr structure into the packet buffer at different offsets where extension headers are expected to be found, and then reads from this structure. Because of a lack of bounds checking, the casting can be done so that the structure extends beyond the packet's end. Hence, with a carefully crafted packet, it is possible to cause the Contiki-NG system to read data outside the packet buffer. A patch that fixes the vulnerability is included in Contiki-NG 4.8.
Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. The 6LoWPAN implementation in Contiki-NG may cast a UDP header structure at a certain offset in a packet buffer. The code does not check whether the packet buffer is large enough to fit a full UDP header structure from the offset where the casting is made. Hence, it is possible to cause an out-of-bounds read beyond the packet buffer. The problem affects anyone running devices with Contiki-NG versions previous to 4.8, and which may receive 6LoWPAN packets from external parties. The problem has been patched in Contiki-NG version 4.8.
Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. An out-of-bounds read can be triggered by 6LoWPAN packets sent to devices running Contiki-NG 4.6 and prior. The IPv6 header decompression function (<code>uncompress_hdr_iphc</code>) does not perform proper boundary checks when reading from the packet buffer. Hence, it is possible to construct a compressed 6LoWPAN packet that will read more bytes than what is available from the packet buffer. As of time of publication, there is not a release with a patch available. Users can apply the patch for this vulnerability out-of-band as a workaround.
Contiki-NG is an open-source, cross-platform operating system for IoT devices. An out-of-bounds read of 1 byte can be triggered when sending a packet to a device running the Contiki-NG operating system with SNMP enabled. The SNMP module is disabled in the default Contiki-NG configuration. The vulnerability exists in the os/net/app-layer/snmp/snmp-message.c module, where the snmp_message_decode function fails to check the boundary of the message buffer when reading a byte from it immediately after decoding an object identifier (OID). The problem has been patched in Contiki-NG pull request 2937. It will be included in the next release of Contiki-NG. Users are advised to either apply the patch manually or to wait for the next release. A workaround is to disable the SNMP module in the Contiki-NG build configuration.
Contiki-NG is an open-source, cross-platform operating system for IoT devices. An out-of-bounds read of 1 byte can be triggered when sending a packet to a device running the Contiki-NG operating system with SNMP enabled. The SNMP module is disabled in the default Contiki-NG configuration. The vulnerability exists in the os/net/app-layer/snmp/snmp-ber.c module, where the function snmp_ber_decode_string_len_buffer decodes the string length from a received SNMP packet. In one place, one byte is read from the buffer, without checking that the buffer has another byte available, leading to a possible out-of-bounds read. The problem has been patched in Contiki-NG pull request #2936. It will be included in the next release of Contiki-NG. Users are advised to apply the patch manually or to wait for the next release. A workaround is to disable the SNMP module in the Contiki-NG build configuration.
Memory access out of buffer boundaries issues was discovered in Contiki-NG 4.4 through 4.5, in the SNMP BER encoder/decoder. The length of provided input/output buffers is insufficiently verified during the encoding and decoding of data. This may lead to out-of-bounds buffer read or write access in BER decoding and encoding functions.
An out-of-bounds read vulnerability exists in the RAWCodec::DecodeBytes functionality of Mathieu Malaterre Grassroot DICOM 3.0.23. A specially crafted DICOM file can lead to an out-of-bounds read. An attacker can provide a malicious file to trigger this vulnerability.
Information disclosure while handling SA query action frame.
INformation disclosure while handling Multi-link IE in beacon frame.
Information disclosure while handling beacon probe frame during scan entry generation in client side.
Information disclosure while handling beacon or probe response frame in STA.
Information Disclosure while parsing beacon frame in STA.
In MbedTLS 3.3.0 before 3.6.4, mbedtls_lms_import_public_key does not check that the input buffer is at least 4 bytes before reading a 32-bit field, allowing a possible out-of-bounds read on truncated input. Specifically, an out-of-bounds read in mbedtls_lms_import_public_key allows context-dependent attackers to trigger a crash or limited adjacent-memory disclosure by supplying a truncated LMS (Leighton-Micali Signature) public-key buffer under four bytes. An LMS public key starts with a 4-byte type indicator. The function mbedtls_lms_import_public_key reads this type indicator before validating the size of its input.
A vulnerability was found in the libsoup package. This flaw stems from its failure to correctly verify the termination of multipart HTTP messages. This can allow a remote attacker to send a specially crafted multipart HTTP body, causing the libsoup-consuming server to read beyond its allocated memory boundaries (out-of-bounds read).
An issue was discovered in PartialReader in the uu_od crate before 0.0.4 for Rust. Attackers can read the contents of uninitialized memory locations via a user-provided Read operation.
An issue was discovered in Malwarebytes 4.6.14.326 and before 5.1.5.116 (and Nebula 2020-10-21 and later). A Stack buffer out-of-bounds access exists because of an integer underflow when handling newline characters.
Incorrect access control in the account management function of web interface in Aten PE6208 2.3.228 and 2.4.232 allows remote authenticated users to read user and administrator accounts passwords via HTTP GET request.
Information disclosure while handling T2LM Action Frame in WLAN Host.
libfreerdp/gdi/gdi.c in FreeRDP > 1.0 through 2.0.0-rc4 has an Out-of-bounds Read.
FreeRDP FreeRDP 2.0.0-rc3 released version before commit 205c612820dac644d665b5bb1cdf437dc5ca01e3 contains a Other/Unknown vulnerability in channels/drdynvc/client/drdynvc_main.c, drdynvc_process_capability_request that can result in The RDP server can read the client's memory.. This attack appear to be exploitable via RDPClient must connect the rdp server with echo option. This vulnerability appears to have been fixed in after commit 205c612820dac644d665b5bb1cdf437dc5ca01e3.
A vulnerability classified as critical was found in FFmpeg 2.0. This vulnerability affects the function rpza_decode_stream. The manipulation leads to memory corruption. The attack can be initiated remotely. The name of the patch is Fixes Invalid Writes. It is recommended to apply a patch to fix this issue.
In PHP versions prior to 7.4.33, 8.0.25 and 8.1.12, when using imageloadfont() function in gd extension, it is possible to supply a specially crafted font file, such as if the loaded font is used with imagechar() function, the read outside allocated buffer will be used. This can lead to crashes or disclosure of confidential information.
A buffer over-read vulnerability exists in bl <4.0.3, <3.0.1, <2.2.1, and <1.2.3 which could allow an attacker to supply user input (even typed) that if it ends up in consume() argument and can become negative, the BufferList state can be corrupted, tricking it into exposing uninitialized memory via regular .slice() calls.
The NVMe driver function nvme_opc_get_log_page is vulnerable to a buffer over-read from a guest-controlled value.
In PHP versions 7.3.x below 7.3.15 and 7.4.x below 7.4.3, while extracting PHAR files on Windows using phar extension, certain content inside PHAR file could lead to one-byte read past the allocated buffer. This could potentially lead to information disclosure or crash.
When using fgetss() function to read data with stripping tags, in PHP versions 7.2.x below 7.2.27, 7.3.x below 7.3.14 and 7.4.x below 7.4.2 it is possible to supply data that will cause this function to read past the allocated buffer. This may lead to information disclosure or crash.
Out-of-bounds Read vulnerability in Open Networking Foundation (ONF) libfluid (libfluid_msg module). This vulnerability is associated with program routine fluid_msg::of10::FeaturesReply::unpack. This issue affects libfluid: 0.1.0.
In FreeRDP before version 2.1.2, there is an out of bounds read in RLEDECOMPRESS. All FreeRDP based clients with sessions with color depth < 32 are affected. This is fixed in version 2.1.2.
stb_image is a single file MIT licensed library for processing images. When `stbi_set_flip_vertically_on_load` is set to `TRUE` and `req_comp` is set to a number that doesn’t match the real number of components per pixel, the library attempts to flip the image vertically. A crafted image file can trigger `memcpy` out-of-bounds read because `bytes_per_pixel` used to calculate `bytes_per_row` doesn’t match the real image array dimensions.
stb_image is a single file MIT licensed library for processing images. A crafted image file may trigger out of bounds memcpy read in `stbi__gif_load_next`. This happens because two_back points to a memory address lower than the start of the buffer out. This issue may be used to leak internal memory allocation information.
In the Linux kernel, the following vulnerability has been resolved: scsi: libfc: Fix array index out of bound exception Fix array index out of bound exception in fc_rport_prli_resp().
When PHP EXIF extension is parsing EXIF information from an image, e.g. via exif_read_data() function, in PHP versions 7.2.x below 7.2.26, 7.3.x below 7.3.13 and 7.4.0 it is possible to supply it with data what will cause it to read past the allocated buffer. This may lead to information disclosure or crash.
The Treck TCP/IP stack before 6.0.1.66 has an IPv6OverIPv4 tunneling Out-of-bounds Read.
In FreeRDP before version 2.1.2, there is a global OOB read in update_read_cache_bitmap_v3_order. As a workaround, one can disable bitmap cache with -bitmap-cache (default). This is fixed in version 2.1.2.
In FreeRDP before version 2.1.2, there is an out of bounds read in license_read_new_or_upgrade_license_packet. A manipulated license packet can lead to out of bound reads to an internal buffer. This is fixed in version 2.1.2.
In FreeRDP before version 2.1.2, there is an out-of-bound read in glyph_cache_put. This affects all FreeRDP clients with `+glyph-cache` option enabled This is fixed in version 2.1.2.